

Cross section measurements of the ⁷Be(n, p)⁷Li and the ⁷Be(n, α)⁴He reactions covering the Big-Bang nucleosynthesis energy range by the Trojan Horse method at CRIB

S. Hayakawa^{*a*}, K. Abe^{*a*}, O. Beliuskina^{*a*}, S. M. Cha^{*b*}, K. Y. Chae^{*b*}, S. Cherubini^{*c*,*d*}, P. Figuera^{*c*}, Z. Ge^{*e*}, M. Gulino^{*c*,*f*}, J. Hu^{*g*}, A. Inoue^{*h*}, N. Iwasa^{*i*}, D. Kahl^{*j*}, A. Kim^{*k*}, D. H. Kim^{*k*}, G. Kiss^{*e*}, S. Kubono^{*a*,*e*,*g*}, M. La Cognata^{*c*}, M. La Commara^{*l*,*m*}, L. Lamia^{*c*,*d*}, M. Lattuada^{*c*,*d*}, E. J. Lee^{*b*}, J. Y. Moon^{*n*}, S. Palmerini^{*o*,*p*}, C. Parascandolo^{*m*}, S. Y. Park^{*k*}, D. Pierroutsakou^{*m*}, R. G. Pizzone^{*c*}, G. G. Rapisarda^{*c*}, S. Romano^{*c*,*d*}, H. Shimizu^{*a*}, C. Spitaleri^{*c*,*d*}, X. D. Tang^{*g*}, O. Trippella^{*o*}, A. Tumino^{*c*,*f*}, P. Vi^{*e*}, H. Yamaguchi^{*a*}, L. Yang^{*a*}, and N. T. Zhang^{*a*,*g*}

^aCenter for Nuclear Study, University of Tokyo, ^bSungkyunkwan University, ^cIstituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, ^dUniversity of Catania, ^eRIKEN Nishina Center, ^fKore University of Enna, ^gInstitute of Modern Physics, Chinese Academy of Sciences, ^hResearch Center for Nuclear Physics, Osaka University, ⁱTohoku University, ^jUniversity of Edinburgh ^kEwha Womans University, ^lUniversity of Naples Federico II, ^mIstituto Nazionale di Fisica Nucleare - Section of Naples, ⁿInstitute for Basic Science, ^oIstituto Nazionale di Fisica Nucleare - Section of Perugia, ^pUniversity of Perugia

It is still an open question that the prediction of the primordial ⁷Li abundance by the standard Big-Bang Nucleosynthesis (BBN) model is about 3 times larger than the observation, the so-called cosmological ⁷Li problem. Since the ⁷Li abundance strongly depends on the ⁷Be production and destruction rate, those of the main destruction processes ⁷Be(n, p)⁷Li and ⁷Be(n, α)⁴He need to be determined in the BBN energy range. In spite of the several recent experimental progresses, there are still some uncertainties and ambiguities at the most relevant energies; the ⁷Be(n, p₁)⁷Li^{*} channel, the transition to the first excited state of ⁷Li has never been taken into account; several new studies on the ⁷Be(n, α)⁴He yet lack in data directly reaching the BBN energies.

We have performed indirect measurements of both of these reactions by the Trojan Horse Method (THM). The experiments were performed at the INFN-LNL in collaboration with the INFN-LNS nuclear astrophysics group, and at the Center-for-Nuclear-Study Radioactive Ion Beam (CRIB) separator located at RIKEN. We will present the results of the latter experiment.

The experimental setup consisted of two parallel-plate avalanche counters to track the ⁷Be RI beam bombarding a CD₂ target, and 6 sets of Δ E-E position-sensitive silicon telescopes to observe the ⁷Be(d, ⁷Lip)¹H and ⁷Be(d, $\alpha\alpha$)¹H reactions in inverse kinematics, which allowed us to approach the ⁷Be(n, p)⁷Li and ⁷Be(n, α)⁴He reactions in quasi-free kinematics, respectively. The contributions of the ⁷Be(n, p₀)⁷Li and the ⁷Be(n, p₁)⁷Li^{*} reactions were extracted by Gaussian fitting to the 3-body Q-value spectrum for $E_{c.m.} \sim 0$ –2 MeV. We will discuss the consistency of the present data with the previous ones taking into account resonance structures, also showing new information around the BBN energies including possible ⁷Be(n, p₁)⁷Li^{*} contributions with reliable error evaluations.