Guideing Channels for Next-Generation LWFA:

Simulations of low-density and high rep. rate plasma channels

Outline:
- Axicons have been used for many years to form long plasma channels\(^1\), but these were limited by the heating mechanism to high densities
- Optical Field Ionization (OFI) can heat electrons on the femtosecond timescale, independent of target density
- We simulate the creation of hot plasma columns using OFI and their subsequent evolution into plasma channels, which are all-optical and could operate at kHz repetition rates
- Our results demonstrate the creation of long (10s of centimetres) and low density (10\(^13\) cm\(^{-3}\) and below) plasma channels, which would be suitable for > 10 GeV LWFA stages

Scheme:
1. Create a long and hot plasma column along an axicon focus, using Optical Field Ionization from a femtosecond pulse
2. The column expands outwards into the cold neutral gas, forming a shock front and leaving a cavity on axis
3. After some time, a second co-propagating pulse can be guided by the plasma channel within this cavity

Key Physics:
- Operate at 10\(^9\) - 10\(^10\) cm\(^3\) with \(T_e\approx 10\) eV. 10s \(\mu m\) scale channel.
- Shock propagates near sound speed \(c_s\approx 10\) km/s, expanding 10s of microns in nanoseconds
- Spitzer equilibration and isotropization collision times are \(\tau_{\text{coll}}\approx 1\) - 10 ps
- Debye length \(\lambda_D\approx 10\) - 100 nm and only 10 ppm of electrons have \(E_k > V\approx m_e c^2/\lambda_D^2\) and can escape channel
 \(\Rightarrow\) No charge separation and a thermal and isotropic velocity distribution means a fluid code can accurately describe channel expansion
- Repetition rate is limited by dissipation of the shock waves and plasma recombination, on much longer timescales

Process	**Timescale**	**Model with:**
Optical Field Ionization | fs | EPOCH PIC Code
Thermalization & Isotropization | ps | Spitzer Collisions
Shock Propagation / Channel Expansion | ns | HELIOS Fluid Code
Laser Guiding | ns | In-House Propagation Code
Recombination / Quiescence | \(\mu s\) | -

High Energy Gain LWFA stages:
- Dephasing between electrons and laser limits stage length, \(L_d\approx 1\) GeV
- OFI heating can produce channels this length using very little energy
- \(E_k = \frac{2 \lambda D \nu_{\text{ion}}}{\pi} I_{\text{th}} < 100\) mJ/m for ionization at \(I_{\text{th}}\approx 4\times 10^{14}\) W/cm\(^2\)
- At the dephasing length energy gain is \(\Delta W\approx \frac{3 m_e c^2}{L_d}\approx \frac{3 m_e c^2}{\nu_{\text{ion}} L}\)

Properties:

<table>
<thead>
<tr>
<th>On-Axis Density</th>
<th>Dephasing Length</th>
<th>Estimated Energy Gain</th>
<th>Axion Parameters</th>
<th>Approx. OFI Energy Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>10(^17) cm(^{-3})</td>
<td>90 cm</td>
<td>30 GeV</td>
<td>(\alpha = 2), (R = 3)°</td>
<td>< 90 mJ</td>
</tr>
</tbody>
</table>

\(^{[1]}\) Axicon Channels - C. G. Durfee III et al, PRL 71, (1993)
\(^{[2]}\) Waveguide Modes - H. Sheng et al, PRE 72, (2005)
\(^{[3]}\) OFI Channels - Lemos et al, Phys. Plas. 20, (2013)

Christopher Arran, R. J. Shallow, J. Jonnerby, J. Holloway, L. Corner, H. M. Milchberg, R. Walczak, S. M. Hooker

Heating with Optical Field Ionization:
- Canonical momentum \(P(t) = p(t) + eA(t)\) is conserved, so electron momentum after a laser pulse has passed is \(P_f = p(t_0) + eA(t_0)\).
- If an electron is born at rest after ionization at \(t_0\), the final electron energy after only femtoseconds is therefore \(E_k = \frac{|p|}{2m_e} |A(t_0)|^2\)
- Electrons are ionized mainly when \(|A(t_0)|\approx A_{\text{th}}\).

\(E = -\frac{\partial A}{\partial t}\) so \(|A(t_0)|\) can be very high, for a circularly polarized laser \((E_k \approx 2I_0)\), or very low, for linear polarization \((E_k \approx 0)\)

\(\Rightarrow\) Simulate this in EPOCH for Hydrogen at different laser ellipticities
- Changing the target species increases \(E_{\text{th}}\) and hence \(|A(t_0)|\) and \(E_k\)

Channel Expansion:
- Simulate channel expansion with HELIOS fluid code, using initial conditions from simulating an axicon beam in Hydrogen
- Can compare to Sedov solution \(r(t) = (r + 1) \left(\frac{E_0}{M_{\text{ion}}}\right)^{1/2} \left|A_0(t_0)\right|^{1/2}\)
- Fit matched spot with in-house beam propagation code \(^1\) and find losses
- Calculated matched spot 20-40 \(\mu m\), with \(\%\) attenuation length 40-100 cm
- Suitable to guide LWFA drivers over channels of lengths of up to a meter, well suited to the axicon
- On axis density falls to 10\(^7\) cm\(^{-3}\)

See also: J. Jonnerby, Experimental design, poster 144
R. J. Shallow, Experimental results, WG5 Tuesday
Thanks to: STFC UK, grant no. ST/J002011/1
Helmholtz Association, grant no. VH-VI-503