Guiding Channels for Next-Generation LWFA:

Simulations of low-density and high rep. rate plasma channels

Outline:

- Axicons have been used for many years to form long plasma channels^[1], but these were limited by the heating mechanism to high densities
- Optical Field Ionization (OFI) can heat electrons on the femtosecond timescale, independent of target density
- We simulate the creation of hot plasma columns using OFI and their subsequent evolution into plasma channels, which are all-optical and could operate at kHz repetition rates
- Our results demonstrate the creation of long (10s of centimetres) and low density (10¹⁷ cm⁻³ and below) plasma channels, which would be suitable for > 10 GeV LWFA stages

Scheme:

- Create a long and hot plasma column along an axicon focus, using Optical Field Ionization from a femtosecond pulse
- The column expands outwards into the cold neutral gas, forming a shock front and leaving a cavity on axis
- 3. After some time, a second co-propagating pulse can be guided by the plasma channel within this cavity

Key Physics:

- Operate at 10¹⁷ 10¹⁸ cm⁻³ with $T_e \sim$ 10 eV. 10s μ m scale channel.
- Shock propagates near sound speed $c_s \sim$ 10 km/s, expanding 10s of microns in nanoseconds
- Spitzer equilibriation and isotropization collision times are $au_{
 m coll}$ ~ 1-10 ps
- Debye length $\lambda_D \sim$ 10-100 nm and only 10 ppm of electrons have $E_k > V \approx \alpha m_e \omega_{\rm p}^2 r_c^2$ and can escape channel
 - ⇒ No charge separation and a thermal and isotropic velocity distribution means a fluid code can accurately describe channel expansion
- Repetition rate is limited by dissipation of the shock waves and plasma recombination, on much longer timescales

Process	Timescale	Model with:
Optical Field Ionization	fs	EPOCH PIC Code In-House Propagation Code
Thermalization & Isotropization	ps	Spitzer Collisions
Shock Propagation / Channel Expansion	ns	HELIOS Fluid Code
Laser Guiding	ns	In-House Propagation Code
Recombination / Quiescence	μs	

Christopher Arran, R. J. Shalloo, J. Jonnerby, J. Holloway, L. Corner, H. M. Milchberg, R. Walczak, S. M. Hooker

Heating with Optical Field Ionization:

- Canonical momentum $\mathbf{P}(t) = \mathbf{p}(t) + e\mathbf{A}(t)$ is conserved, so electron momentum after a laser pulse has passed is $\mathbf{p}_f = \mathbf{p}(t_0) + e\mathbf{A}(t_0)$.
- If an electron is born at rest after ionization at t_0 , the final electron energy after only femtoseconds is therefore $E_k = \frac{|p_f|^2}{2m_e} = \frac{e^2}{2m_e} |\mathbf{A}(t_0)|^2$
- Electrons are ionized mainly when $|E(t_0)| \approx E_{\rm th}$. $E = -\frac{\partial A}{\partial t} \text{ so } |A(t_0)| \text{ can be very high, for a circularly polarized laser}$ $(E_k \approx 2U_{\rm p})$, or very low, for linear polarization $(E_k \approx 0)^{[3]}$

- Simulate this in EPOCH for Hydrogen at different laser ellipticities
- Changing the target species increases $E_{\rm th}$ and hence $|{\bf A}(t_0)|$ and E_k

Channel Expansion:

- Simulate channel expansion with HELIOS fluid code, using initial conditions from simulating an axicon beam in Hydrogen
- Can compare to Sedov solution $r(t) = (\gamma + 1)^{\frac{1}{2}} \left(\frac{ZE_k}{M_{\rm ion}}\right)^{\frac{1}{4}} (r_o \tau)^{\frac{1}{2}}$

- Calculated matched spot 20-40 µm, with 1/e attenuation length 40-100 cm
- Suitable to guide LWFA drivers over channels of lengths of up to a meter, well suited to the axicon
 - On axis density falls to 10¹⁷ cm⁻³

High Energy Gain LWFA stages:

- Dephasing between electrons and laser limits stage length, $L_{
 m dp} pprox rac{1}{2} rac{\lambda_{
 m p}^{3}}{\lambda_{L}^{2}}$
- OFI heating can produce channels this length using very little energy
- $\frac{E}{L} \sim \frac{2 \lambda t_{\text{FWHM}}}{\pi} I_{\text{th}} < 100 \text{ mJ/m}$ for ionization at $I_{\text{th}} \approx 4 \times 10^{14} \text{ Wcm}^{-2}$
- At the dephasing length energy gain is $\Delta W \sim \frac{m_e \omega_{\rm p} c}{e} L_{\rm dp} \approx \pi \frac{n_{\rm crit}}{n_e} m_e c^2$

On-Axis Density				Approx. OFI Energy Required
10 ¹⁷ cm ⁻³	90 cm	30 GeV	$\alpha = 2^{\circ}, R = 3$ "	< 90 mJ

- [1] Axicon Channels C. G. Durfee III et al, PRL 71, (1993)
- [2] Waveguide Modes H. Sheng et al, PRE 72, (2005)
- [3] OFI Channels Lemos et al, Phys. Plas. 20, (2013)