

Nuclear physics of ²⁶Al production

E. T. Li^{*a,b*}, M. Lugaro^{*b*}, H. Brinkman^{*b*}, C. L. Doherty^{*b,c*}, B. Cote^{*b*}

^aCollege of Physics & Energy, Shenzhen University, 518060, Shenzhen, China
^bKonkoly Observatory, Hungarian Academy of Sciences, H-1121, Budapest, Hungary
^cMonash Centre for Astrophysics, School of Physics and Astronomy, Monash University, Australia

The ground state of the unstable ²⁶Al nucleus (²⁶Al^g) with T_{1/2} = 0.717 Myr was the first radioisotope detected in the galaxy, via the characteristic 1.809 MeV γ -emission of ²⁶Mg [1]. The observation is direct proof of ongoing stellar nucleosynthesis in our Galaxy and indicates that there are approximately 2-3 M_{\odot} of ²⁶Al^g [2]. It is therefore fundamental to understand the production of ²⁶Al^g and the effect of the nuclear physics uncertainty [3]. ²⁶Al has a isomeric state (²⁶Al^m) which is prohibited to decay into ²⁶Al^g due to the large spin difference (see Fig. 1). However, an equilibration between ²⁶Al^g and ²⁶Al^g could proceed via intermediate states and influence the abundance of ²⁶Al^g. Hence, the isomer could have an important influence on the production of ²⁶Al^g. To clarify the production mechanism of ²⁶Al^g in the winds of massive stars, we present our investigation of the sensitivity of the yields to variation of nuclear reaction rates involving ²⁶Al^g and ²⁶Al^g.

Figure 1: Level scheme of ²⁶Al and decay transitions.

References

- [1] W. A. Mahoney et al., The Astrophys. J. 286(1984)578.
- [2] R. Diehl et al., Nature 439(2006)45.
- [3] C. Iliadis et al., The Astrophys. J. 193(2011)16.
- [4] G. Audi et al., Chin. Phys. C, 41(2017)030001.