Dark Matter search at fixed target

T. Spadaro LNF - INFN

Light-DM searches: motivations

If DM is a thermal relic from hot early universe, can hunt for it in particle-physics searches: search for non-gravitational interactions DM-SM a mediator might exist, which let SM and DM fields interact

Consider possible mediator-SM interactions, limit to lowest-dimension operators:

Scalar,	L ~ μ <mark>SHH</mark> + λ <mark>S</mark> 2H	$H \rightarrow$ Modified H properties \rightarrow suited for LHC
Pseudoscalar portal,	L ~ ψ γ ^μ γ ⁵ ψ d _u a	\rightarrow Axion or ALP's
Neutrino portal,	L ~ Y _N LH N	\rightarrow Sterile neutrinos
Vector portal,	L ~ εq ψ γ ^μ ψ Α _μ	ightarrow Dark photons

Each portal can involve different interactions \rightarrow model dependency, freedom E.g.: vector mediator (dark photon) + scalar DM, a secluded U(1)_D sector mixing with SM U(1):

$$\mathcal{L}_{mix} = \epsilon F'^{\mu\nu} F_{\mu\nu} \qquad \mathcal{L}_{int} = A'_{\mu} (\epsilon e \mathcal{J}^{\mu}_{EM} + g_D \mathcal{J}^{\mu}_D) \qquad \mathcal{J}^{\mu}_D = i \varphi^* \partial^{\mu} \varphi + c.c.$$

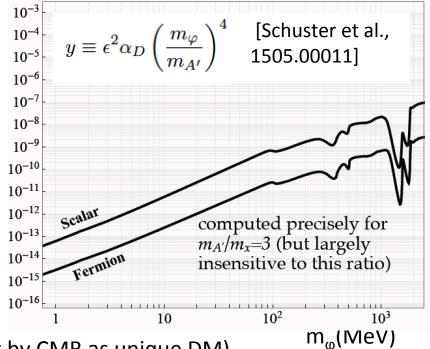
E.g.: vector mediator (dark photon) + Dirac DM, a broken U(1)_D sector

$$\mathcal{L}_{int} = A'_{\mu} \chi^{\dagger}_{+} \bar{\sigma}^{\mu} \chi_{-}$$

E.g.: vector mediator (dark photon) of a U(1) gauge with charge=B-L

etc.

28/5/2016


Light-DM searches: motivations

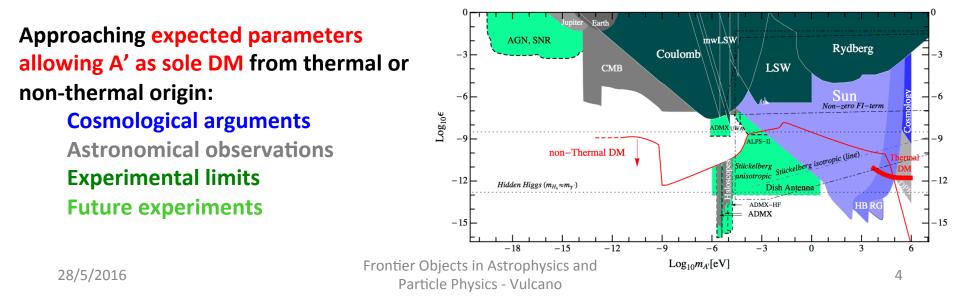
Can (any of) these models explain observed DM?

E.g., A' + scalar DM: relic density ruled by $\sigma(\varphi \varphi^* \rightarrow e^+e^-) \sim \gamma/m_{\varphi}^2$, $y \equiv \epsilon^2 \alpha_D \left(\frac{m_{\varphi}}{m_{A'}}\right)^4$ Match w DM density: $\langle \sigma v_{rel} \rangle \sim 3 \ 10^{-26} \ \text{cm}^3 \text{s}^{-1} \sim 1/20 \text{TeV}^2$? OK if m_{ω}^{20} TeV/y^½

Thermal origin working for a BROAD range of mediator and DM masses, guiding exp. searches:

- TeV DM, O(1) couplings: WIMP's searches
- Sub-eV DM, y ~ $0(10^{-26})$: Axion/ALP or γ -A' mix
- MeV-GeV DM \rightarrow this talk

E.g.: vector portal matches with observed DM if:


- Thermal relic of a scalar DM (Dirac DM ruled out by CMB as unique DM)
- Thermal relic of Dirac DM + soft $U(1)_{D}$ breaking
- Evolution of asymmetric primordial particle-antiparticle density of scalar or Dirac DM

DM searches: experimental status

More than 20 years of experimental effort in the GeV-TeV (WIMP) range Various constraints from direct searches Sensitivity to halo below 1 GeV (v ~ 10⁻³⁾ limited: threshold in nuclear recoil energy

LHC closing the gap, too: see M. Antonelli's talk

Sub-eV: usually a by-product of axion or ALP's searches a sub-eV A': lifetime longer than age of universe, can explain DM by itself

Why MeV-GeV? Hints/suggestions

(g-2)_{μ} anomaly 3- σ discrepancy with expectation might be explained by A' contribution expect 10 < M_{A'} < 100 MeV and $\epsilon^2 \sim 10^{-6}$

e+/e- cosmic-ray eccess (PAMELA, Fermi, AMS-02) if not due to PULSAR's, might be due to $\varphi \varphi^* \rightarrow A' \rightarrow e^+e^$ spectrum measured by AMS favors $M_{A'} \sim 500$ MeV, for multiple-hadron production

CDMS-II 3 events on top of expected background of 0.62 after null from LUX & XENON WIMP mass within (6.5,20) GeV @68% CL, σ(WIMP – Nucleon) ~ 10⁻⁴¹ cm² Higgs and Z mediators disfavored, cross section might be enhanced by a GeV-Mass A'

The DAMA-Libra (and COGENT) effect

a few-GeV DM scattering might be enhanced by A' exchange

Others, more details in V. Kozhuharov talk

Searching in the MeV-GeV region is a justified experimental effort

MeV-GeV DM: experimental guidance

MeV-GeV states with ϵ couplings down to 10⁻⁸—10⁻⁵ interesting to be probed ranging between short-lived and long-lived light states

Fixed target can yield A' orders of magnitude more than colliders for low-dimension Op's [Batell arXiv:0906.5614]

OK, will have to consider acceptances, backgrounds, the production mode, etc..

Vibrant field indeed, with competition of:

high-energy proton colliders low-energy e⁺e⁻ colliders **fixed target experiments with proton, e⁻ and e⁺ beams**

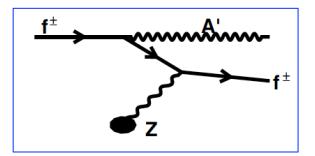
Vector portal: production mechanisms

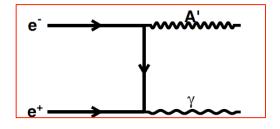
Bremsstrahlung from e[±] beams (thin target):

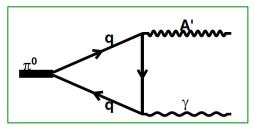
pros: if $m_e \ll M_{A'} \ll E_{beam}$, clear signature $E_{A'} \sim E_{beam}$ and $\theta_{A'} \sim (M_{A'}/E)^{3/2}$ pros: yield scales with Z² cons: yield falls with $1/M_{A'}^2$

e⁺e⁻ annihilation from e⁺ beams

pros: clear signature after photon matching pros: yield sizeable up to threshold cons: yield/atom scales as ~ Z

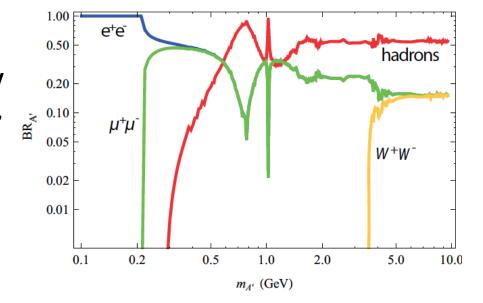

Meson decays:


pros: clear signature if accompanying γ detected pros: yield up to threshold cons: assume A' coupling with quarks


Hard bremsstrahlung from proton beams

pros: can be calculated accurately, allow testing $M_{A'} > M_{\eta}$

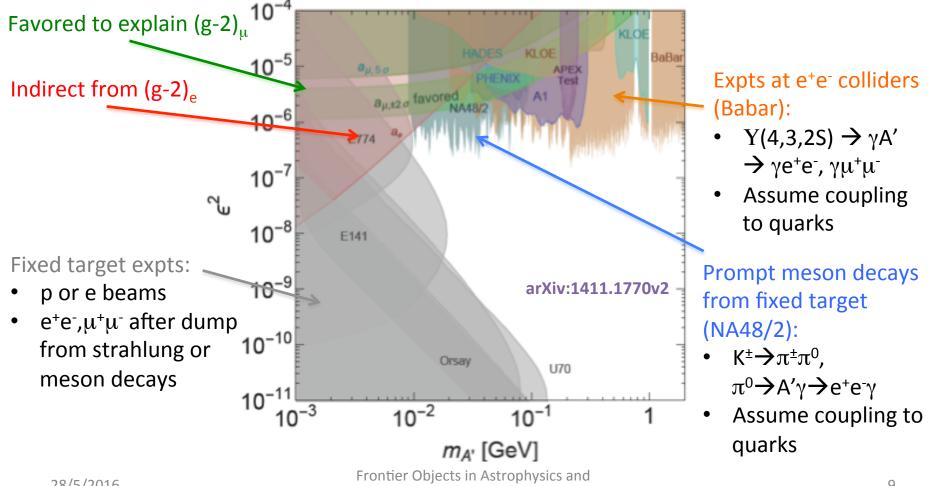
at high pt scattering on partons dominates, but difficult to be estimated with accuracy



Vector portal: decay mechanisms

Visible decays, assuming universal coupling with em current: $A'_{\mu}(\epsilon e \mathcal{J}^{\mu}_{EM} + g_D \mathcal{J}^{\mu}_D)$

e⁺e⁻ decay dominant for $2m_e < M_{A'} < 210$ MeV $\mu^+\mu^-$ decay ~ as frequent as e⁺e⁻ for heavier A' Hadronic modes as in SM e⁺e⁻ scattering [if $M_{A'} < 2m_e$, A' $\rightarrow 3\gamma$, A' practically stable] $M_{A'} = 0$ is a special case, see later



If A' coupled to a DM particle φ with $M_{\varphi} < M_{A'}$: BR(A' $\rightarrow \varphi \varphi$) ~ 1 ("invisible" decays) A' lifetime significantly dominated by $\underline{\alpha}_{D}$, expected of O(1) BR(e⁺e⁻, $\mu^{+}\mu^{-}$) suppressed by a factor ε^{2}

Vector portal: visible searches

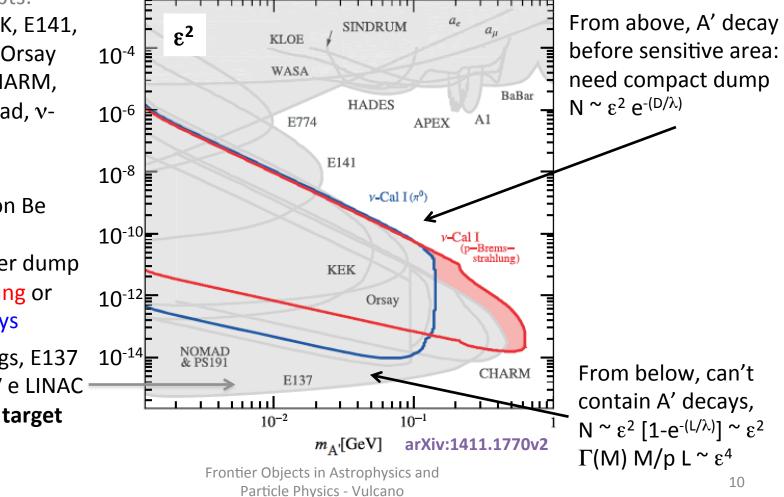
Assume A' decays to SM particles with universal coupling εe , go di-lepton bump hunting

model dependent: no A' $\rightarrow \phi \phi$

A' visible searches (beam dump)

Assume A' decays to SM particles with universal coupling ϵe , go di-lepton bump hunting

Fixed target expts:


- e beams: KEK, E141, E137, E774, Orsay
- p beams: CHARM,
 PS191, Nomad, ν CAL

 $\nu\text{-CAL}$ at U70:

- 2 10¹⁸ POT on Be target
- e⁺e⁻, μ⁺μ⁻ after dump from strahlung or meson decays

Lowest couplings, E137 10⁻¹ @ SLAC 20 GeV e LINAC -----

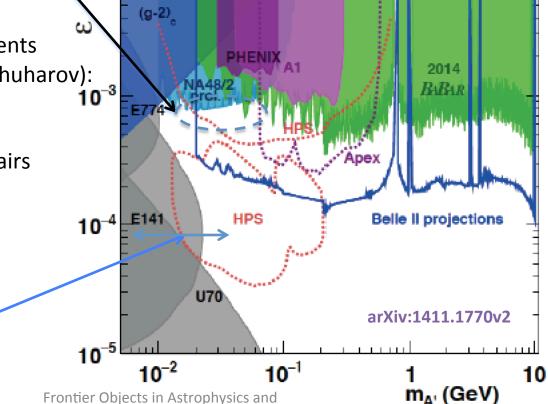
• 10²⁰ e on Al target

"From above":

Belle-II can improve on Babar, but irreducible bkg will limit sensitivity NA62 can improve on NA48/2 in particular thanks to a better inv. mass resolution ATLAS, CMS (not shown) LHCb (not shown)

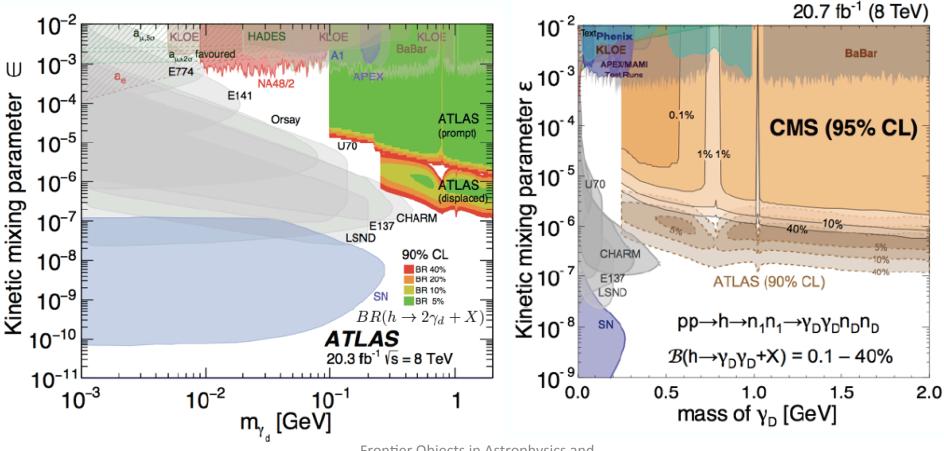
Particle Physics - Vulcano

Planned fixed-target experiments using A'-strahlung (see V. Kozhuharov):

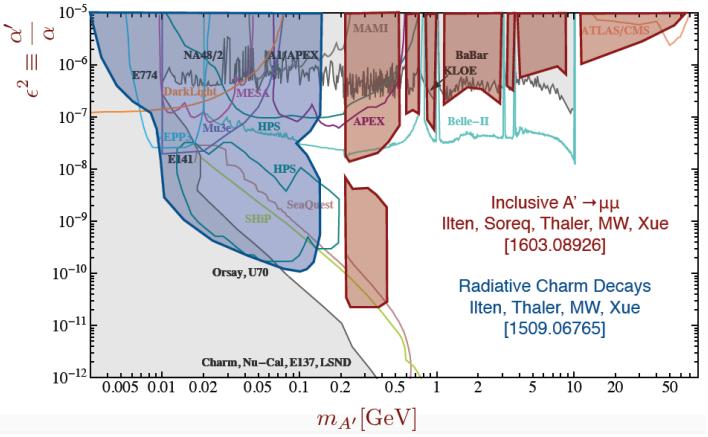

Apex @ JLAB

10⁹ events, detect e⁺e⁻ pairs Run in 2018

HPS @ JLAB

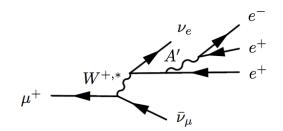

Running since 2015 Optimizations for shortand long-lived scenarios

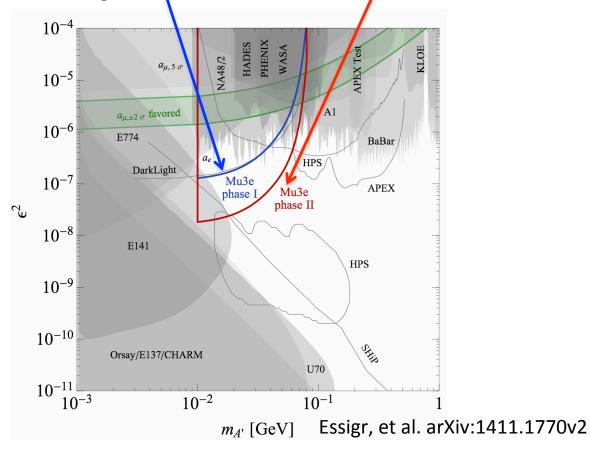
MAGIX @ MESA Mainz

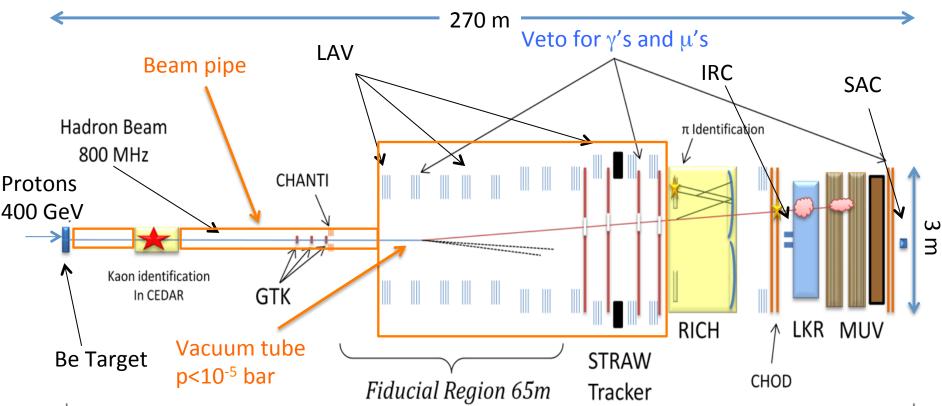

"From above":

ATLAS, CMS from Higgs 4-lepton modes: prompt and displaced vertices After run-II improvements: first results @ end of 2016 [Beecham, dark sectors WS 2016]

"From above":

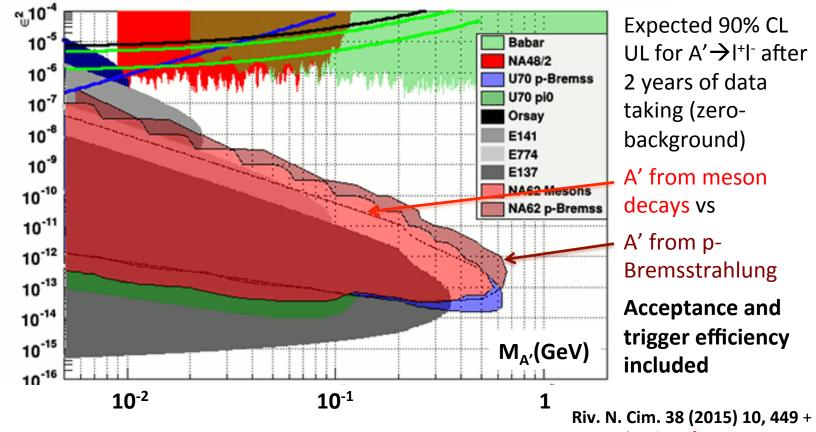

LHCb from $D^* \rightarrow D0 A'$, $A' \rightarrow 2$ -lepton modes: prompt and displaced vertices future sensitivity (Run-III), triggerless setup



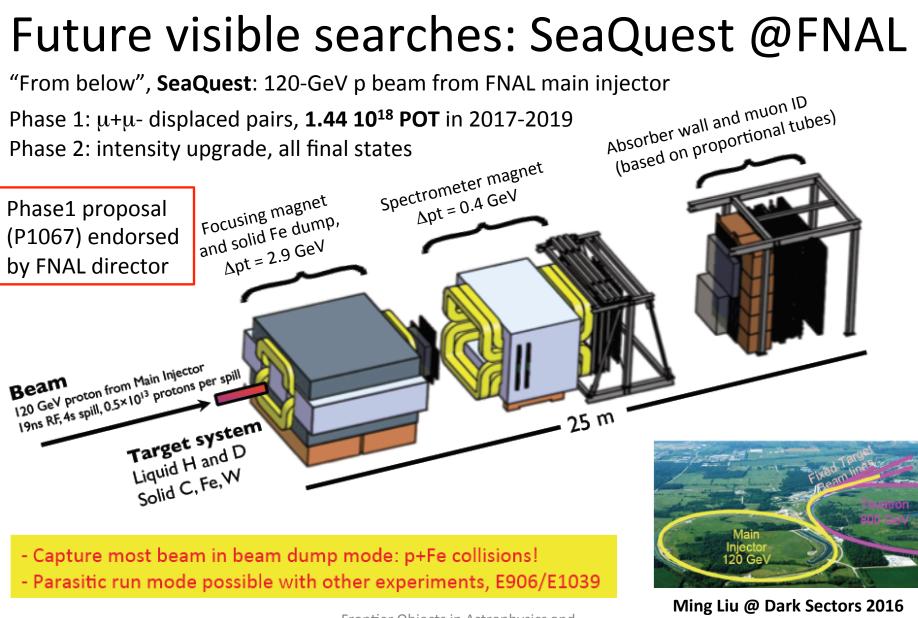

"From above":

The Mu3e experiment at PSI, should probe $10^{15} \mu$ decays by 2016 (5.5 10^{16} by 2018) It can improve in the NA48/2--Babar region

Probing the transition



3 × 10¹² ppp, 750 MHz on beam spectrometer (6% K+), ~10 MHz downstream, O(10 KHz) final trigger rate


beam spectrometer (GTK), efficient γ vetoes (LAV, LKr, IRC, SAC), redundant PID

"From below", many new searches planned/proposed/approved NA62 @ CERN SPS can improve on U70, with ~2 10¹⁸ 400-GeV POT in 2016-2018

my evaluations for NA62

Frontier Objects in Astrophysics and Particle Physics - Vulcano

Future of visible searches: SHIP @ SPS

"From below", hidden-sector experiment proposed: SHIP at CERN SPS

Proton fixed-target (beam dump like) experiment at the CERN SPS

- SPS: 4x10¹³ proton on target /7s @ 400 GeV, 1 sec spills (slow

extraction)

- $\rightarrow 2 \ 10^{20}$ pot in 5 years (similar to CNGS)
- High A/Z & short λ -target to maximize D,B, γ production and to stop π , K before decay to reduce flux of active neutrinos and muons

- Muon shield to range out beam-induced muons.

Target/hadron absorber

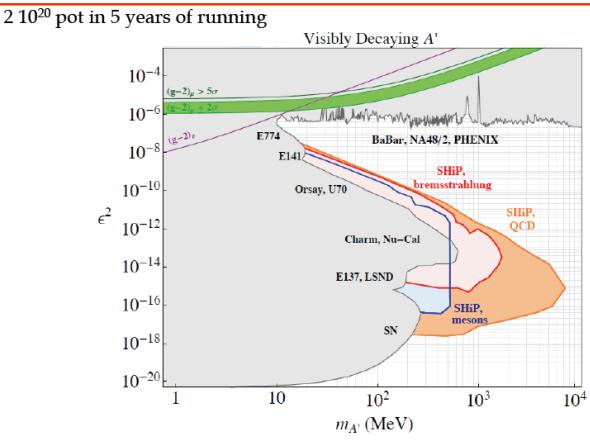
Hidden sector spectrometer

Decay volume

 ν (τ) detector

Active muon shield

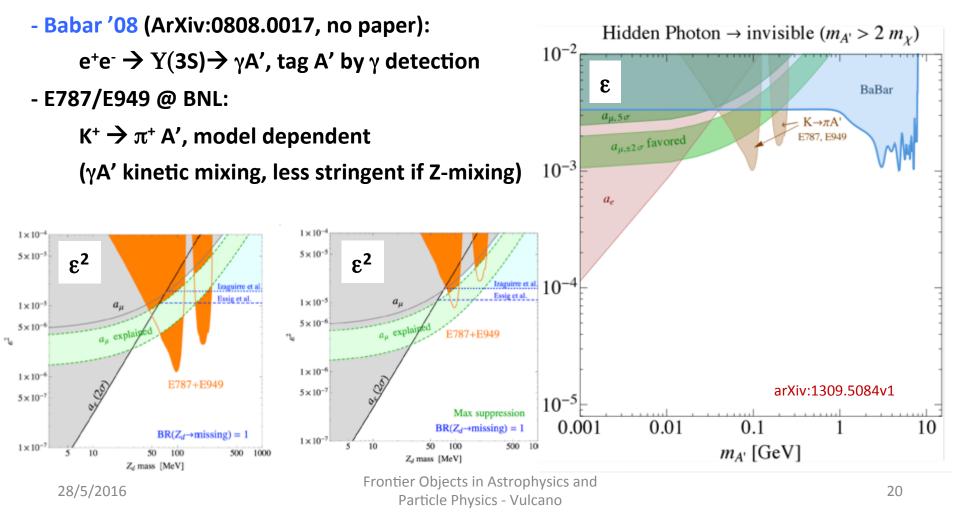
150 m


Technical Proposal: <u>arXiv:1504.04956</u> Physics Proposal: <u>arXiv:1504.04855</u>

4

G. Lanfranchi @ Dark Sectors 2016

Future of visible searches: SHIP


Proposal to start data taking in 2026, supported by SPS Committee and Research Board CERN management appointed a "Physics Beyond Colliders" study group to give an input to the 2018 European Strategy for Particle Physics, see A. Golutvin @ Dark Sectors 2016

Frontier Objects in Astrophysics and Particle Physics - Vulcano

Invisible searches

If A' coupled to a DM particle ϕ with $M_{\phi} < M_{A'}$: short lifetime, beam dump searches evaded Scarce information for invisible searches

Invisible searches: annihilation

Approach to model-independent A' invisible searches

1. Positron annihilation: $e^+e^- \rightarrow \gamma A'$, tag A' by γ detection, bump hunting on missing mass exploit cross section enhancement toward threshold (control A'-shape dependence)

 10^{-10}

PADME@LNF (approved):

see V. Kozhuharov's talk in this session

VEPP-3 @ Novosibirsk (proposed):

e⁺e⁻→A′γ, 4(20) nb ε²/10⁻⁶@ M_{A′} = 15(20) MeV

MC study, considering SM backgrounds:

$$e^+p \rightarrow e^+p\gamma$$

 $e^+e^- \rightarrow e^+e^-\gamma$
 $e^+e^- \rightarrow \gamma\gamma$

е⁺е⁻ → үүү

 $\mathbf{H}_{\mathbf{A}'}^{\mathbf{F}} \left(\mathbf{GeV} \right)$

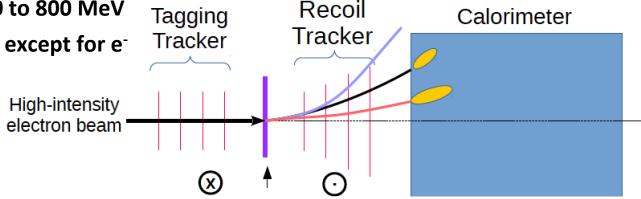
Invisible searches: E_{miss}

Approach to model-independent A' invisible searches

2. Electron beam A'-strahlung: $e^{-}N \rightarrow e^{-}NA'$, detect e^{-} , A'-signal has missing energy $E_{miss} > 0$

if an E_{miss} signal is found, have to guess $M_{A'}$ by distribution shape..

NA64@CERN SPS (running):

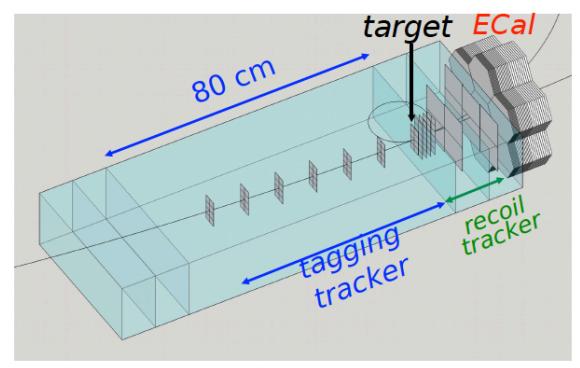

see V. Kozhuharov's talk in this session

LDMX @ LCLS-II of SLAC (proposed, installation 2018/19, operational in 2020/21):

 10^{15-16} 4-GeV e⁻ on a 0.1 X₀ W target (from the SCRF LINAC, parasitic to the X-ray FEL)

Track e⁻ before/after A'-strahlung

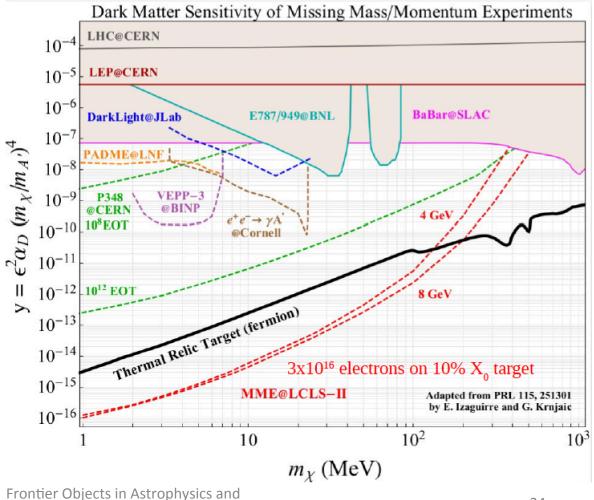
Select recoil pt from 80 to 800 MeV Tage Expects no calo energy except for e⁻ Trac


Invisible searches: LDMX @ SLAC

Background rejection based on calorimeter granularity (shower shape)

Si-W calorimeter from High-luminosity-LHC R&D for CMS Endcaps

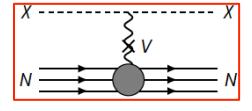
Low-mass (0.5%X₀/layer), 100x100 μ m-pixel Si-based tracking: NA62 technology, σ_t ~ 1ns

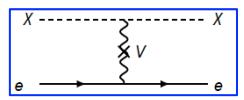

Trigger to reduce rate from 1 GHz to 750 KHz full TDC-based readout of Ecal + Trackers

Invisible searches: future sensitivities

Next few years: sensitivity improvement, sensitivity reaching relic-density interesting region

PADME @ LNF, approved, 2017-MMAPS @ Cornell, not funded DarkLight @ Jlab, concept NA64 @ CERN, running VEPP-3 @ BINP, uncertain LDMX @ SLAC, proposed, ~2020

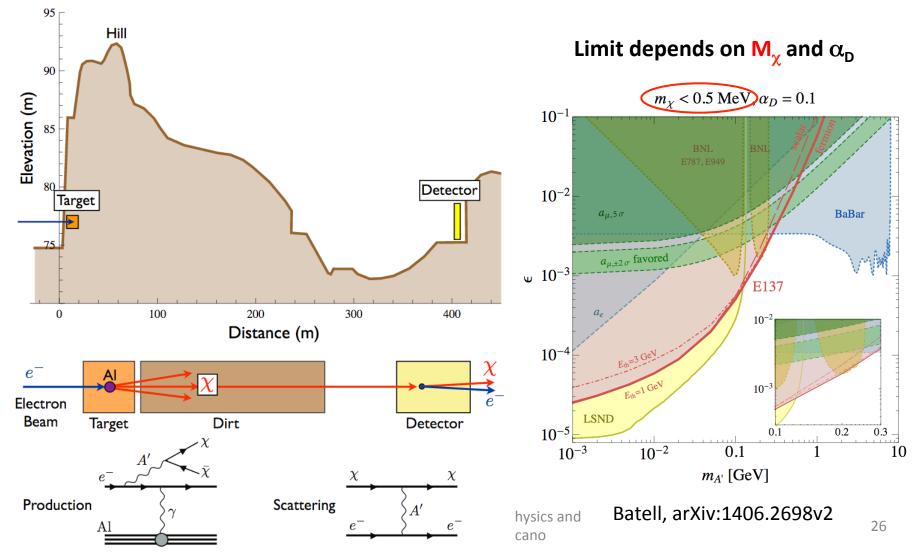



Particle Physics - Vulcano

DM searches: produce and detect it

If decay A' → φφ* is open, can detect φ?
Production: meson decay or electron/proton beam A'-strahlung
Detection: via nucleon interaction or scattering on electrons

alike ν-nucleon neutral current elastic scattering
can be a by-product of neutrino experiments indeed

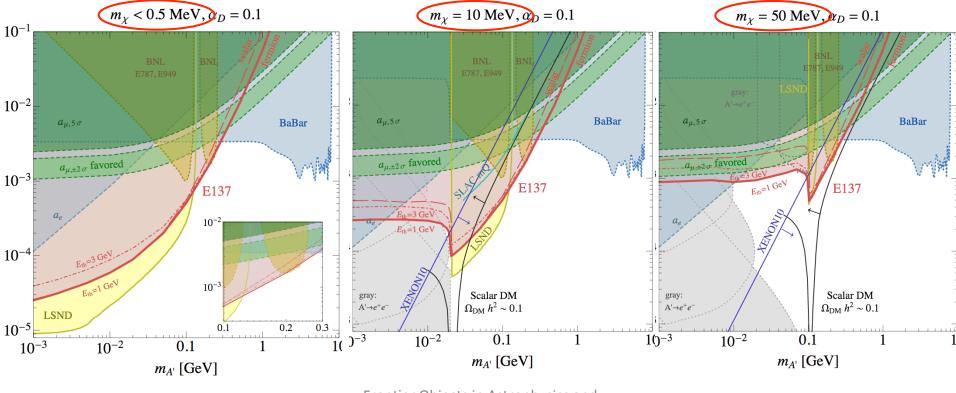

Model dependency, caveats:

- 1. assume only one DM φ , if $\varphi \rightarrow \varphi_2$ acceptance drops dramatically
- 2. DM-nucleon scattering is model dependent

Under above assumptions, experiments sensitive to $\epsilon^4 lpha_{
m D}$ with dependency on $M_{
m A'}$ and $M_{
m o}$

DM searches: re-analysis of E137@SLAC

A total of 30C 20-GeV e- on Al target + beam dump (search for Axions \rightarrow e+e- ,photinos, etc.)



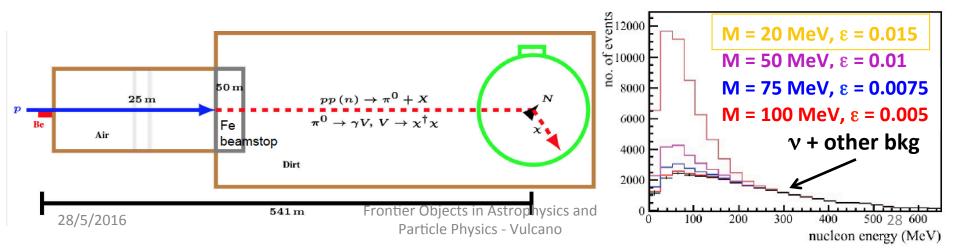
DM searches: re-analysis of E137@SLAC

Limit depends on ${\rm M_\chi}$ and $\alpha_{\rm D}$

region $M_{A'} < 2 \tilde{M}_{\phi}$, virtual transition \rightarrow acceptance drop \rightarrow worse sensitivity

Similar analysis for LSND (Large Scintillator Neutrino Detector) data interpreted as: 10²³ 800-MeV POT, p N $\rightarrow \pi^0$ X, $\pi^0 \rightarrow \gamma$ A', A' $\rightarrow \phi \phi *$, valid if M_{ω} < M_{$\pi 0$}/2

Frontier Objects in Astrophysics and Particle Physics - Vulcano


Neutrino experiments turned to DM

MiniBoone @ FNAL booster (2002-2012), v_e appearance and v interactions Search for DM-nucleon scattering, dedicated run ~1.9 10²⁰ POT in 2014 (10 months): DM alters NC elastic yield vs nucleon kinetic energy wtr for v's move beam off-target to Fe dump, reduce v rate by x50 signal: ~100-MeV recoil pt from scintillation light (800 ton mineral oil, 1280 8" PMT's)

Analysis in progress, expect to improve from 50 MeV to 1 GeV [10% systematic error]

Future experiment might exploit:

TOF (for high DM masses) Energy cuts (if off-axis detector, expect DM spectrum softer than for v) Scattering-angle cuts: ask forward for DM-e⁻ scattering

Neutrino experiments to detect DM

Existing facilities

LSND, 10²³ 800-MeV POT, off-axis detector @ 30 m (like a beam dump)

Short Baseline (SBND) @ FNAL, 2 10²⁰ 9-GeV POT, 260 ton LAr TPC @ 110 m from target expect to improve on MiniBoone by ~10–20

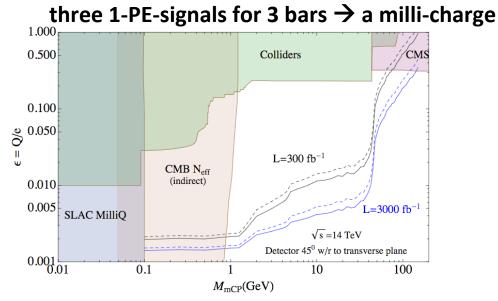
T2K, 10²¹ 30-GeV POT, 2° off-axis detectors: near (2 ton, 280 m) and far (~50 kton, SuperK)

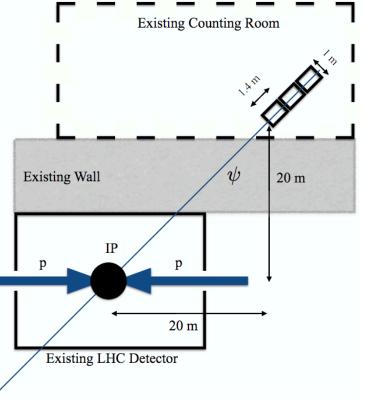
Future facilities

COHERENT @ SNS, 10²³ 1-GeV POT/yr, 90° off-axis at 20m SHiP, 5 10¹⁹ 400-GeV POT/yr, ~10 ton LAr-TPC on-axis at ~100m MicroBooNE & NOvA

LBNF/DUNE @ FNAL, 3 10²¹ 120-GeV POT/yr, near detector 3.5 m radius at ~ 500 m optimization for DM under study: either DM detector off-axis (> 2°) or DM detector after dump + horns&dipole for v's

Exotic A' fenomenology: millicharges


Massless A' mix with ordinary $\gamma \rightarrow$ DM coupled to our hypercharge has a "milli-charge" ϵe


Unsuccessfully searched for at the SLAC MilliQ experiment Signature proposed for LHC [Haas et al., arXiv:1410.6816v2]: Drell-Yan pp $\rightarrow \psi \psi * X$

Detect millicharged particles using high-yield scintillator bars in a shielded environment Instrument 1 m³ of plastic scintillator at 20 m from IP (e.g. USA15@ATLAS)

 ψ

3 sets of 1.4-m long scintillator bars with PMT's 1 MIP ~ 10⁶ PE's

Briefly about other "portals": HNL

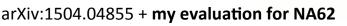
NP with 3 singlet fermions (heavy neutral leptons, HNL) might explain [Shaposhnikov et al.]: neutrino masses dark matter density baryon asymmetry of the universe

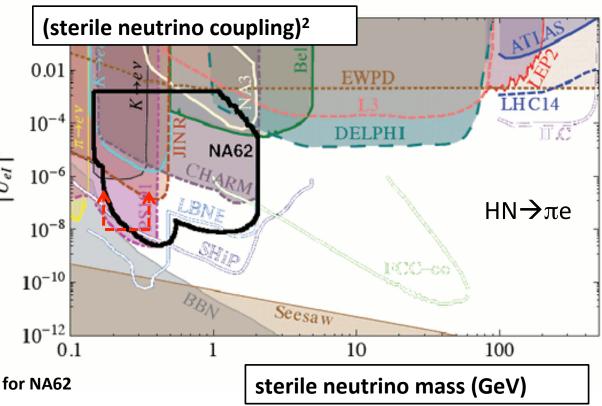
Observation:

standard "see-saw" means a Gut-scale Majorana mass with O(1) Yukawa OK, you can obtain the same with very small Yukawa's, such as those for a DM particle

Phenomenology of heavy neutrinos: modified kinematics π , K, D_(s) $\rightarrow \mu(e)N$, K -> πIN , etc. semileptonic decays, N $\rightarrow \pi\mu$, πe , etc.

Visible/invisible searches as A' K, D production prompt decays/beam dump


Briefly about other "portals": HNL


Mesons $(D_{(s)}, K's)$ produced at target might decay to long-lived exotic particles reaching the NA62 decay volume

The simplest signatures for heavy neutral leptons correspond to two-body (semi)leptonic decays: $HN \rightarrow \pi e, \pi \mu$

Production + decay: yield ~ (coupling)⁴

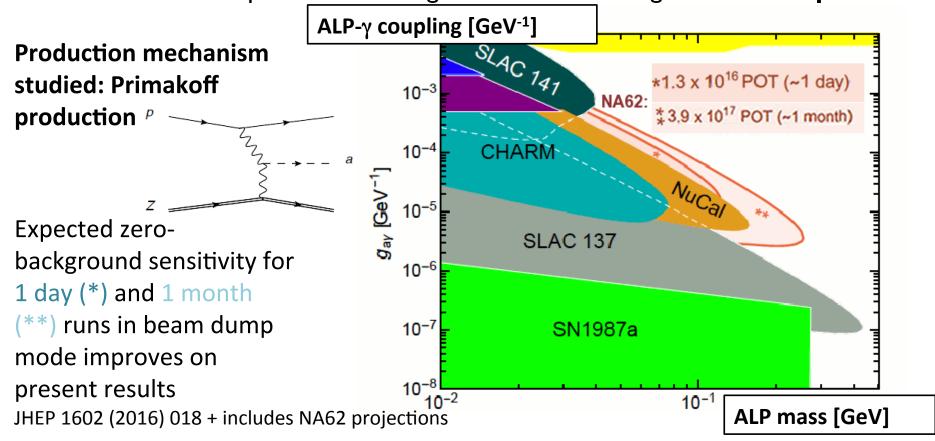
Complementary to the invisible search from Ke2 decays using 2015 data from NA62 (expectation, which should exceed limit from 0vββ decays)

Briefly about other "portals": ALP's

Motivation in strong CP QCD problem [Quinn, Peccei]: Axions

ALP: anything light and (pseudo-)scalar coupled to SM particles by dimension-5 [Beyond the strong CP]

Coupling to photons:


$$\mathcal{L} = \frac{1}{2} \partial^{\mu} a \, \partial_{\mu} a - \frac{1}{2} m_a^2 \, a^2 - \frac{1}{4} g_{a\gamma} \, a \, F^{\mu\nu} \tilde{F}_{\mu\nu} \, ,$$

Phenomenology:

Low mass, production/detection mediated by strong-em field High mass, production via Primakoff/detection from its γγ decay

Briefly about other "portals": ALP's

Search for light (pseudo-)scalar particles coupled to two gauge bosons (here, SM photons) produced at target and decaying to $\gamma^{(*)}\gamma^{(*)}$ in the NA62 fiducial volume Difficult search to be performed during standard data taking: **beam-dump mode**

Present/future of MeV-GeV DM:

a very vibrant field

Vector portal: visible search					
Where	Source	Intensity	Production mode	Detection mode	Status
Super KEK-B	$e^+e^- \rightarrow \Upsilon(3S)$	$> 100 \text{ fb}^{-1} @ \Upsilon(3S)$	$\Upsilon(3S) \rightarrow \gamma A'$	$A^\prime ightarrow e^+e^-, \mu^+\mu^-$	Commis. 2018
JLAB	$e^-, 2 \text{ GeV}$	$10^9 EOT (W)$	A'-strahlung	$A' ightarrow e^+e^-$	Commis. 2018
CEBAF12 @ JLAB	$e^{-},1-2~{ m GeV}$	$10^{14} EOT (W)$	A'-strahlung	$A' \rightarrow e^+ e^,$	Running 2016-20
MESA @ Mainz	$e^-, 155 \text{ MeV}$	10^{16} EOT (Xe gas)	A'-strahlung	$A' \rightarrow e^+ e^,$	Commis. 2020
$\pi E5$ line @ PSI	$\mu^-, 28 \text{ MeV}$	$10^{15-16}~\mu^-$	$\mu ightarrow u u A'$	$A' ightarrow e^+e^-$	Commis. 2017
LHC @CERN	pp 8, 13 TeV	few fb^{-1}	$H \rightarrow 4l + MET$	$A' ightarrow \mu^+ \mu^-$	Running
LHC @CERN	$pp,13 { m ~TeV}$	$15 { m fb^{-1}}$	$D^* o DA'$	$A^\prime ightarrow e^+e^-, \mu^+\mu^-$	Running
SPS @CERN	p, 400 GeV	2 10 ¹⁸ POT	Meson, A'-strahlung	$A^\prime ightarrow e^+e^-, \mu^+\mu^-$	Running –2018
Main Inj. @ FNAL	p, 120 TeV	1.5	Meson, A'-strahlung	$A' ightarrow \mu^+ \mu^-$	Proposed 2017–19
SPS @CERN	p, 400 GeV	$2 \ 10^{20} \text{ POT}$	Meson, A'-strahlung	$A' \rightarrow e^+e^-, \mu^+\mu^-$	Proposed 2026
· · · · ·	Super KEK-BJLABCEBAF12 @ JLABMESA @ Mainz $\pi E5$ line @ PSILHC @CERNLHC @CERNSPS @CERNMain Inj. @ FNAL	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Vector portal: invisible search

			1			
Babar	PEP-II @ SLAC	$e^+e^- ightarrow \Upsilon(3S)$	$57~{ m fb}^{-1}$	$\Upsilon(3S) \rightarrow \gamma A'$	Single- γ trigger	ICHEP 2016
VEPP-3	VEPP-3 @ Budker Inst.	$e^+, 500 \text{ MeV}$	$1.5~\mathrm{MHz}~\gamma\gamma$	$e^+e^- ightarrow A'\gamma$	detect $\gamma + M_{ m miss}$	Proposed
PADME	BTF @ Frascati INFN	$e^+, 550 { m MeV}$	$15~{ m Hz}~\gamma\gamma$	$e^+e^- ightarrow A'\gamma$	detect $\gamma + M_{\rm miss}$	Approved, 2017-19
MMAPS	CESR @ Cornell	$e^+, 5.3 \text{ GeV}$	$2.2~\mathrm{MHz}~\gamma\gamma$	$e^+e^- ightarrow A'\gamma$	detect $\gamma + M_{\rm miss}$	Not funded
NA64	SPS @ CERN	$e^-, 100 \text{ GeV}$	$e^-N ightarrow e^-NA'$	$10^9 - 10^{12}$ EOT	detect $e^- + E_{\rm miss}$	Running, 2016-17
LDMX	LCLS-II @ SLAC	$e^-, 4 \text{ GeV}$	$e^-N ightarrow e^-NA'$	$10^{15} - 10^{16} \text{ EOT}$	detect $e^- + E_{\rm miss}$	Proposed, 2020

Vector portal: DM search

Vector portai. Divi scarch						
FNAL	$p, 9 \; { m GeV}$	$2 \ 10^{20} \ \text{POT}$	Meson, A' -strahlung $A' \to \varphi \varphi$	detect ϕ @ 110 m	Under study	
Tokai-Kamioka	$p,30~{ m GeV}$	$10^{21} { m POT}$	Meson, A' -strahlung $A' \to \varphi \varphi$	detect ϕ @ 280 m	Running	
SNS @ Oak Ridge	$p, 1 { m ~GeV}$		Meson, A' -strahlung $A' \to \varphi \varphi$	detect ϕ @ 20 m 2 ^o -OA	Proposed	
SPS @CERN	$p,400~{ m GeV}$		Meson, A' -strahlung $A' \to \varphi \varphi$	detect ϕ @ 100 m	Proposed 2026	
DUNE @FNAL	$p,120~{ m GeV}$	$3 \ 10^{21} \text{ POT}$	Meson, A'-strahlung $A' \to \varphi \varphi$	detect ϕ @ 500 m	Under study 2020	
	Tokai-Kamioka SNS @ Oak Ridge SPS @CERN	Tokai-Kamioka $p, 30 \text{ GeV}$ SNS @ Oak Ridge $p, 1 \text{ GeV}$ SPS @CERN $p, 400 \text{ GeV}$	FNAL $p, 9 \text{ GeV}$ $2 \ 10^{20} \text{ POT}$ Tokai-Kamioka $p, 30 \text{ GeV}$ 10^{21} POT SNS @ Oak Ridge $p, 1 \text{ GeV}$ 10^{23} POT SPS @CERN $p, 400 \text{ GeV}$ $2 \ 10^{20} \text{ POT}$	$ \begin{array}{ c c c c c c c c } \hline FNAL & p, 9 \ \text{GeV} & 2 \ 10^{20} \ \text{POT} & \text{Meson}, A'\text{-strahlung} \ A' \to \varphi \varphi \\ \hline Tokai-Kamioka & p, 30 \ \text{GeV} & 10^{21} \ \text{POT} & \text{Meson}, A'\text{-strahlung} \ A' \to \varphi \varphi \\ \hline SNS @ \ Oak \ \text{Ridge} & p, 1 \ \text{GeV} & 10^{23} \ \text{POT} & \text{Meson}, A'\text{-strahlung} \ A' \to \varphi \varphi \\ \hline SPS @ \ CERN & p, 400 \ \text{GeV} & 2 \ 10^{20} \ \text{POT} & \text{Meson}, A'\text{-strahlung} \ A' \to \varphi \varphi \\ \hline \end{array} $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	

Some of the above will address neutrino portal, too: neutrino experiments, NA62, SHiP Some of the above will address ALP portal, too: NA62, SHiP

28/5/2016

Conclusions

A motivated experimental effort ongoing to pin down DM candidates in laboratory

Ultra low- and high-mass direct DM searches: no clear indication of DM mass and model

Searches in the MeV-GeV mass range suggested by different sources

Present and planned experiments span different techniques: high-energy colliders high-intensity proton, electron, and positron beams low-energy, high-luminosity colliders short- and long-baseline neutrino experiment

Different candidates and DM scenarios simultaneously under test

Present status:

- Re-analyses of past fixed-targed and neutrino experiments
- No clear DM signal in the lab from running experiments
- A number of new proposals for near future