BEACH-2010, Perugia, June 22th 2010

Recent CKM Element results from BaBar and Belle

Nicola Gagliardi
On behalf of the BaBar Collaboration

Outline

- Motivation:
 - CKM matrix;
 - \vee Plan of the talk: $|V_{ub}|$, $|V_{cb}|$, $|V_{td}/V_{ts}|$ and $|V_{us}|$;
- |V_{ub}| from B decays:
 - ∨ Inclusive $B \rightarrow X_{u} lv$;
 - \sim Exclusive B $\rightarrow \pi l \nu$;
- |V_{ch}| from B decays;
 - \sim Exclusive B \rightarrow Dlv;
- $|V_{td}/V_{ts}|$ from b \rightarrow s γ b \rightarrow d γ decays;
- $|V_{us}|$ from τ decays;
- Conclusions.

Weak interaction and CKM Matrix

• In the Standard Model, the mass eigenstates and the weak eigenstates do not coincide and a unitary transformation connects the two sets using the Cabibbo-Kobayashi-Maskawa matrix (CKM);

$$\begin{pmatrix} d \\ s \\ b \end{pmatrix} = V_{CKM} = \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

• V_{CKM} could be expressed in terms of three angles and one irremovable complex phase (source of *CP* violation).

$$V_{CKM} = egin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix}$$

$$egin{aligned} V_{\it CKM} &pprox egin{aligned} & 1 - rac{\lambda^2}{2} & \lambda & A \, \lambda^3 (
ho - i \, \eta) \ & - \lambda & 1 - rac{\lambda^2}{2} & A \, \lambda^2 \ & A \, \lambda^3 (1 -
ho - i \, \eta) & - A \, \lambda^2 & 1 \ & A \, \sim \, 0.81, \, \lambda \, \sim \, 0.22, \,
ho \, \sim \, 0.2, \, \eta \, \sim \, 0.3 \end{aligned}$$

In this talk

Only a few of the most recent BaBar and Belle measurements will be presented:

|V_{ub}| from B decays

Inclusive B→Xulv

$$\Gamma(\bar{B} \to X_u \ell \bar{\nu}) = \underbrace{\begin{array}{c} G_F^2 |V_{ub}|^2 m_b^5 \\ 192\pi^3 \end{array}}_{\text{free quark}} \underbrace{\left[1 + \mathcal{O}(\alpha_s) + \mathcal{O}(1/m_b^2) + H.C.\right]}_{\text{correction}} + H.C. \underbrace{\begin{array}{c} \text{OPE} \\ \sim 5\% \text{ uncertaintly} \\ \text{decay} \end{array}}_{\text{correction}}$$

$$\frac{\Gamma(b \to u\ell\nu)}{\Gamma(b \to c\ell\nu)} \approx \frac{|V_{ub}|^2}{|V_{cb}|^2} \approx \frac{1}{50} \quad \text{m}_{u} \ll m_{c} \text{ different kinematics}$$

$$\text{measure } AB(B \to X \text{ ly}) \text{ in a result}$$

1.5

 E_{ℓ} (GeV)

0.5

- measure $\Delta B(B \rightarrow X_{n} l \nu)$ in a region where the S/N is good and the $\Delta\Gamma_{ij}$ is reliably calculable (exclude b→clv decays)
- OPE convergence is compromised (O(1/m_k))

$$\Delta B(B \to X_u \ell \nu) = \tau_B |V_{ub}|^2 \zeta_c$$

theoretical acceptances are sensitive to b quark motion (Fermi motion) parametrized by **Shape Function.**

High theoretical error

Belle Multivariate analysis

The irreducible uncertainties in the measurements to date are related to limited phase space;

No need to place stringent, hard cuts that result in zero efficiency!

- \checkmark Signal side: reconstruct high momentum lepton (p_{cm} > 1 GeV/c);
- ✓ Boosted Decision Tree cut with many input parameters (20 event parameters):
 M²_{miss} ,Q_{total} ,Q_{lepton} ,N_{lepton} ,Q(B),D* partial reconstruction etc...;
- ∠ 2D fit to M_X,q² with background and signal floated to determine background yield;
- Measure absolute rate.

PRL 104:021801 (2010)

 $657M B \overline{B}$

 \mathbf{B}_{TAG} : from hadronic decays

Belle Multivariate analysis: results

$$\Delta B(B \to X_u l \nu; p_l > 1.0 GeV) = 1.963 \times (1 \pm 0.088_{stat} \pm 0.081_{syst}) \times 10^{-3}$$

Theory	V _{ub} 10 ³	Stat.%	Syst.%	Ther.%
BLNP	4.45	4.4	4.0	5.4
DGE	4.53	4.4	4.0	3.3
GGOU	4.47	4.4	4.0	3.0

|V_{ub}| from exclusive B→π(ρ)|v

- $|V_{ub}|$ can be extracted by studing $B^{0/+} \to \pi^{-0} (\rho^{-0}) l^+ \nu$ decays;
- •Needed input from the theory in the calculation of the form factor:

$$\frac{d\Gamma(B^0 \to \pi^- l^+ \nu)}{dq^2 d\cos\theta w_l} = |V_{ub}| \frac{G_F^2 p_{\pi}^3}{32\pi^3} \sin^2\theta w_l |f_+(q^2)|^2$$

- •Neutrino 4-momentum inferred from the total energy and momentum in the event;
- •Backgrounds (from e^+e^- →light quarks, charm and non-resonant $b \rightarrow u$) reduced by means of neural networks;
- •Binned Maximum Likelihood fit to m_{ES} and ΔE in bins of q^2 . Four channel $(\pi^-,\pi^0\rho^-,\rho^0)$ are fitted simultaneously imposing isospin.

PRELIMINARY Submitted to PRD arXiv:1005.3288v1

$$m_{ES} = \sqrt{s/4} - p_B^2$$

$$\Delta E = E_B - \sqrt{s/2}$$

$$377M B \overline{B}$$

|V_{ub}| from exclusive B→π(ρ)lv

 $\Pi Z = I$

$$B(B^0 \to \pi^- l^+ \nu) = (1.41 \pm 0.05 \pm 0.07) \times 10^{-4}$$

 $B(B^0 \to \rho^- l^+ \nu) = (1.75 \pm 0.15 \pm 0.27) \times 10^{-4}$

	q^- Kange	$\Delta \zeta$	$ V_{ub} $	
	(GeV^2)	(ps^{-1})	(10^{-3})	
$B \to \pi \ell \nu$,
LCSR [15]	0 - 16	$5.44 {\pm} 1.43$	$3.63 \pm 0.12^{+0.59}_{-0.40}$	
HPQCD [22]			$3.21 \pm 0.17^{+0.55}_{-0.36}$	
LCSR [15]	0 - 26.4	7.72 ± 2.32	$3.46 \pm 0.10^{+0.68}_{-0.43}$	
HPQCD [22]	0 - 26.4	$9.35 {\pm} 3.22$	$3.14 \pm 0.09^{+0.68}_{-0.43}$	
$B \to \rho \ell \nu$				•
LCSR [16]	0 - 16.0	13.79	2.75 ± 0.24	
LCSR [16]	0 - 20.3	17.15	2.58 ± 0.22	
ISGW2 [14]	0 - 20.3	14.20	2.83 ± 0.24	

..or we can simultaneously fit the data and theoretical predictions:

$$|V_{ub}| = (2.95 \pm 0.31) \times 10^{-3} FNAL/MILC$$

V_{ub} extracted integrating the FF's predictions

|V_{ub}| summary

Source	V _{ub} (10³)	Error (10 ⁻³)	
Β→πΙν	2.95	0.31	2.7 σ
$B \rightarrow X_u I \nu$	4.37	0.39	2.7 0
UTFit	3.48	0.16	11

|V_{cb}| from B decays

$|V_{cb}|$ from exclusive $B \rightarrow Dlv$

•Exclusive determination of |V_{ch}| through:

PRL 104, 011802(2010)

$$\frac{d\Gamma(B\to D\,l\,\nu)}{d\,\omega} = \frac{G_F^2}{48\,\pi^3\,\hbar} (m_B + m_D)^2 (\omega^2 - 1)^{\frac{3}{2}} |V_{cb}|^2 G(\omega)$$

$$\omega = \frac{m_B^2 + m_D^2 - q^2}{2 m_B m_D} \qquad q^2 = (p_B - p_D)^2$$

- •G(w) is a form factor, we use the Caprini et al parametrization;
- • $|V_{cb}|$ is extracted extrapolating the differential decay at w=1, exploiting lattice QCD calculation;
- •Data sample: 460 millions of BB pairs;
- $\bullet B$ → Dlv events searched for the recoil of fully reconstructed hadronic B decays; 20
- •Discriminant variable: $m_{miss}^2 = m_v^2$

$|V_{cb}|$ from exclusive $B \rightarrow Dlv$

• χ^2 fit of $G(1)/V_{cb}/$ and ρ^2 in 10 bins of w (1 < w < 1.6);

•Results:

$$G(1)|V_{cb}| = (43.0 \pm 1.9 \pm 1.4) \times 10^{-3}$$

 $B(B^- \to D^0 l^- v) = (2.31 \pm 0.08 \pm 0.09)\%$
 $B(B^0 \to D^+ l^- v) = (2.23 \pm 0.11 \pm 0.11)\%$

◆Extraction of |V_{cb}|:

Unquenched LQCD, Nucl.Phys 140,461

$$|V_{cb}| = (39.8 \pm 1.8 \pm 1.3 \pm 0.9) \times 10^{-3}$$

Quenched LQCD, Phys. Lett. B655, 45

Extrapolating at w=1 $|V_{cb}| = (41.6 \pm 1.8 \pm 1.4 \pm 0.7) \times 10^{-3}$ Interpolating around w=1.2 $\rightarrow |V_{cb}| = (41.4 \pm 1.3 \pm 1.4 \pm 1.0) \times 10^{-3}$

|V_{cb}| summary

Exclusive $|V_{cb}| \sim 2 \sigma$ lower than inclusive $|V_{cb}|$

$|V_{td}/V_{ts}|$ from B decays

b \rightarrow d γ and b \rightarrow s γ decays and $|V_{td}/V_{ts}|$

- •The decays $b\rightarrow d\gamma$ and $b\rightarrow s\gamma$ are one loop electroweak penguin diagrams
- •In the SM the rate $b\rightarrow d\gamma$ is suppressed relative to $b\rightarrow s\gamma$ by a factor $|V_{td}/V_{ts}|^2$
- •In theories beyond the SM, new particles may appear in the loop (probe for NP)
- •Reconstructed 7 decay modes for X_d , X_s :

$B \to X_d \gamma$	$B \to X_s \gamma$
$B^0 \rightarrow \pi^+\pi^-\gamma$	$B^0 \rightarrow K^+\pi^-\gamma$
$B^+ \rightarrow \pi^+\pi^0\gamma$	$B^+ \rightarrow K^+ \pi^0 \gamma$
$B^+ \rightarrow \pi^+\pi^-\pi^+\gamma$	$B^+ \rightarrow K^+\pi^+\pi^-\gamma$
$B^0 \rightarrow \pi^+\pi^-\pi^0\gamma$	$B^0 \rightarrow K^+\pi^-\pi^0\gamma$
$B^0 \rightarrow \pi^+\pi^-\pi^+\pi^-\gamma$	$B^{0} \to K^{+}\pi^{-}\pi^{+}\pi^{-}\gamma$
$B^+ \rightarrow \pi^+\pi^-\pi^+\pi^0\gamma$	$B^{+} \rightarrow K^{+}\pi^{-}\pi^{+}\pi^{0}\gamma$
$B^+ \to \pi^+ \eta \gamma$	$B^+ \to K^+ \eta \gamma$

- •Signal yields extracted with a 2D maximum likelihhod to the ΔE and m_{ES} in two hadronic mass bins:
 - \triangleright 0.5-1.0 GeV (dominated by B→(ρ,ω)γ and B→K*γ resonances \triangleright 1.0-2.0 GeV (non-resonant region)

(arXiv:1005.4087v1 submitted to PRL)

$|V_{td}/V_{ts}|$

$$\frac{B(b \rightarrow d \gamma)}{B(b \rightarrow s \gamma)} = 0.040 \pm 0.009_{stat} \pm 0.010_{syst}$$

Measurements of $B \rightarrow K^*\gamma$, $b \rightarrow s\gamma$ and $B \rightarrow (\rho, \omega)\gamma$ all compatible with previous results.

$$\left| \frac{V_{td}}{V_{ts}} \right| = 0.199 \pm 0.022_{stat.} \pm 0.024_{syst.} \pm 0.002_{th.}$$

Ali, Asatrian, Greub, Phys. Lett. B 429, 87 (1998)

Measurements of $|V_{td}/V_{ts}|$ compatible with previous result

$|V_{us}|$ from τ decays

B factories as τ factories

B factories are also τ factories:

$$\sigma_{\tau\tau}$$
=0.9 nb , σ_{BB} =1.1 nb

- •Area of physics with recent results:
 - •Precise τ branching fractions;
 - •τ mass;
 - Constraint on Lepton Flavor Violation;
 - $|V_{us}|$ from τ decays
 - Finclusive $\tau \rightarrow s$ decays;
 - Ratio of BR

$|V_{us}|$ from inclusive $\tau \rightarrow s$ decays

τ decay rate into hadrons:

$$R_{\tau} = \frac{\Gamma\left(\tau \to hadrons \, \nu_{\tau}\right)}{\Gamma\left(\tau \to e \, \overline{\nu}_{e} \nu_{\tau}\right)} = R_{\tau, \, strange} + R_{\tau, \, non-strange}$$

Branching fractions are experimental inputs for |V_{us}| determinations:

hadronic system in $\tau \to X_s \nu$	ICHEP08 averages (%)	References
K ⁻ [from τ decay]	0.690 ± 0.010	PDG 2006 + BABAR 2008 prelim.
[indirect, from $K_{\mu 2}$]	(0.715 ± 0.004)	Gamiz et al., PoSKAON:008,2008
$K^-\pi^0$	0.426 ± 0.016	BABAR 2007
$K^0\pi^-$	$0.835 \pm 0.022 (S = 1.4)$	Belle 2008, BABAR 2008
$K^{-}\pi^{0}\pi^{0}$	0.058 ± 0.024	PDG 2006
$K^0\pi^0\pi^-$	0.360 ± 0.040	PDG 2006
K-π-π+	$0.273\pm0.002\pm0.009$	Phys. Rev. Lett. 100:011801,2008
$(\overline{K}3\pi)^-$ (est'd)	0.074 ± 0.030	ALEPH 2005
$K_1(1270) \to K^-\omega$	0.067 ± 0.021	ALEPH 2005
$(\overline{K}4\pi)^-$ (est'd)	0.011 ± 0.007	ALEPH 2005
K−η K*−η	$0.016\pm0.05\pm0.09$ $0.013\pm0.12\pm0.09$	Phys. Lett. B672:209-218,2009
K ⁻ φ	$0.0037 \pm 0.0003 (S = 1.3)$	Belle 2006, BABAR 2007
TOTAL	2.8447 ± 0.0688	
	(2.8697 ± 0.0680)	

Strange τ decays

- Lepton tag used to identify one hemisphere-other hemisphere contains signal particle
- •High π^0 energy required in CMS
- →high purity (93%)
- \bullet π⁰ trajectory within 90° of K_sπ⁰

momentum

$$B(\tau^- \to \bar{K}^0 \pi^- \pi^0 \nu_{\tau}) = 0.342 \pm 0.006 \pm 0.015$$

Alternative | V_{us} | determination

•Can obtain |V₁₁₅| through the BF ratio:

$$\frac{B(\tau \to K \nu_{\tau})}{B(\tau \to \pi \nu_{\tau})} = \frac{f_{k}^{2} |Vus|^{2} (1 - m_{k}^{2} / m_{\tau}^{2})^{2}}{f_{\pi}^{2} |Vud|^{2} (1 - m_{\pi}^{2} / m_{\tau}^{2})^{2}} (1 + \delta_{LD})$$

- $\bullet \delta_{\mathrm{ID}}$ long distance EW correction
- |V_{III}| from allowed beta decays
- •Ratio f_{K}^{2}/f_{π}^{2} from lattice QCD
- *Select ττ events with:

One τ decaying into 3 pions

The other into the signal decay

(M.Roney CIPANP 2009)

Branching Ratios (Preliminary)

B($\tau^- \rightarrow \pi^- v_{\tau})/B(\tau^- \rightarrow e^- v_{\tau} \overline{v_e})$

 $(5.945\pm0.014\pm0.061)\times10^{-1}$

B($\tau^- \rightarrow K^- v_\tau)/B(\tau^- \rightarrow e^- v_\tau \overline{v_e})$

(3.882±0.032±0.056)×10⁻²

B($\tau^- \rightarrow K^- \nu_{\tau})/B(\tau^- \rightarrow \pi^- \nu_{\tau})$

(6.531±0.056±0.093)×10-2

By measuring ratios, benefit from systematic uncertainty cancellation

 $467 \, fb^{-1}$

|V_{us}| status

(*) indirect $\tau \rightarrow K\nu$

Use precise measurement of B[K \rightarrow µv(γ)] to get indirect measurements of B[$\tau\rightarrow$ Kv(γ)] Rev.Mod.Phys 78 1043(2006)

Unitarity	0.2255 ± 0.0010
inclusive $\tau \to \textbf{S}$	0.2151 ± 0.0026
$\frac{BF(\tau \to K \nu)}{BF(\tau \to \pi \nu)}$	0.2255 ± 0.0023

- $|V_{us}|$ from inclusive τ→s decays results in 3σ discrepancy from unitarity;
- ■However, still need to complete the program of τ →s measurements
 - → Next: $(K3\pi)^{-}$, $K3\pi^{0}$, $K4\pi^{0}$;
- | V_{us} | from branching fraction ratio compatible consistent with unitarity.

Conclusions

- $|V_{ub}|$ determinations (incl/excl) differ by 2.7 σ ; latest updates have increased this discrepancy
 - $|V_{ub}|$ exclusive: 2.95 \pm 0.31;
 - $|V_{ub}|$ inclusive: 4.37 ± 0.39 ;
- $|V_{cb}|$ determinations (incl/excl) differ by ~2.3 σ ; their average is $(40.9 \pm 1.0) \times 10^{-3}$;
- $\bullet |V_{td}/V_{ts}|$ compatible with previous measurements
- | V_{us} |:
 - Finclusive $\tau \rightarrow s$ decays results in 3σ discrepancy from unitarity; however, still need to complete $\tau \rightarrow s$ measurements
 - ▶BF ratio compatible consistent with unitarity.

Backup slides

The B factories

Integrated Luminosity(cal)

