A twisted index for three dimensional gauge theories

Alberto Zaffaroni

Università di Milano-Bicocca
Gauge/Gravity Duality 2015, GGI

Outline

- Motivations
- The twisted index
- Examples and generalizations
- Conclusions

Outline

- Motivations
- The twisted index
- Examples and generalizations
- Conclusions
based on

F. Benini, A.Z. 1504.xxxxx

Motivations

Lot of recent activity in the study of supersymmetric and superconformal theories in various dimensions in closely related contexts

- Progresses in the evaluation of exact quantum observables.
- Related to localization and the study of supersymmetry in curved space.
[Pestun + Festuccia-Seiberg + many •.]]

Motivations

Here we consider a very simple example, a 3d gauge theory on $S^{2} \times S^{1}$ where susy is preserved by a twist on S^{2}

$$
\left(\nabla_{\mu}-i A_{\mu}^{R}\right) \epsilon \equiv \partial_{\mu} \epsilon=0, \quad \int_{S^{2}} F^{R}=1
$$

The result becomes interesting when supersymmetric backgrounds for the flavor symmetry multiplets ($A_{\mu}^{F}, \sigma^{F}, D^{F}$) are turned on:

$$
u^{F}=A_{t}^{F}+i \sigma^{F}, \quad q^{F}=\int_{S^{2}} F^{F}=i D^{F}
$$

and the path integral becomes a function of a set of magnetic charges q^{F} and chemical potentials u^{F}. We can also add a refinement for angular momentum.

Motivations

Notice: we are not computing the superconformal index of the 3d gauge theory.

It is rather a twisted index:a trace over the Hilbert space \mathcal{H} of states on a sphere in the presence of a magnetic background for the R and the global symmetries,

$$
\begin{aligned}
& \operatorname{Tr}_{\mathcal{H}}\left((-1)^{F} e^{i J_{F} A^{F}} e^{-\beta H}\right) \\
& Q^{2}=H-\sigma^{F} J_{F} \\
& \text { holomorphic in } u^{F}
\end{aligned}
$$

where J_{F} is the generator of the global symmetry.

Motivations

The original motivation for this work comes holography.

CFTs on curved space-times described by dual regular asymptotically AdS backgrounds

$$
d s_{4}^{2}=\frac{d r^{2}}{r^{2}}+\left(r^{2} d s_{M_{3}}^{2}+O(r)\right) \quad A=A_{M_{3}}+O(1 / r)
$$

Classifications of M_{3} supersymmetric backgrounds (transverse holomorphic foliations)
[Klare-Tomasiello-AZ; Closset-Dumitrescu-Festuccia-Komargodski]

Motivations

Twisted $M_{3}=S^{2} \times S^{1}$ leads to $1 / 4$ BPS asymptotically AdS_{4} static black holes

- solutions asymptotic to magnetic AdS_{4} and with horizon $\mathrm{AdS}_{2} \times S^{2}$
- Characterized by a collection of magnetic charges $\int_{S^{2}} F$
- preserving supersymmetry via a twist

$$
\left(\nabla_{\mu}-i A_{\mu}\right) \epsilon=\partial_{\mu} \epsilon \quad \Longrightarrow \quad \epsilon=\operatorname{cost}
$$

Various solutions with regular horizons, some embeddable in $\mathrm{AdS}_{4} \times S^{7}$.
[Cacciatori, Klemm; Gnecchi, Dall'agata; Hristov, Vandoren];

Motivations

CFTs on curved space-times described by dual regular asymptotically AdS backgrounds

$$
d s_{d+1}^{2}=\frac{d r^{2}}{r^{2}}+\left(r^{2} d s_{M_{d}}^{2}+O(r)\right) \quad A=A_{M_{d}}+O(1 / r)
$$

[A.Z. with Benini,Hristov,Tomasiello]

AdS_{4}

Partition function of twisted
QM fixed point

The background

Consider an $\mathcal{N}=2$ gauge theory on $S^{2} \times S^{1}$

$$
d s^{2}=R^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)+\beta^{2} d t^{2}
$$

with a background for the R-symmetry proportional to the spin connection:

$$
A^{R}=-\frac{1}{2} \cos \theta d \varphi=-\frac{1}{2} \omega^{12}
$$

so that the Killing spinor equation

$$
D_{\mu} \epsilon=\partial_{\mu} \epsilon+\frac{1}{4} \omega_{\mu}^{a b} \gamma_{a b} \epsilon-i A_{\mu}^{R} \epsilon=0 \quad \Longrightarrow \quad \epsilon=\mathrm{const}
$$

The partition function

The path integral for an $\mathcal{N}=2$ gauge theory on $S^{2} \times S^{1}$ with gauge group G localizes on a set of BPS configurations specified by data in the vector multiplets $V=\left(A_{\mu}, \sigma, \lambda, \lambda^{\dagger}, D\right)$

- A magnetic flux on $S^{2}, \mathfrak{m}=\frac{1}{2 \pi} \int_{S^{2}} F$ in the co-root lattice
- A Wilson line A_{t} along S^{1}
- The vacuum expectation value σ of the real scalar

Up to gauge transformations, the BPS manifold is

$$
\left(u=A_{t}+i \sigma, \mathfrak{m}\right) \in \mathcal{M}_{\mathrm{BPS}}=\left(H \times \mathfrak{h} \times \Gamma_{\mathfrak{h}}\right) / W
$$

The partition function

The path integral reduces to a the saddle point around the BPS configurations

$$
\sum_{\mathfrak{m} \in \Gamma_{\mathfrak{h}}} \int \operatorname{dud} \bar{u} \mathcal{Z}^{\mathrm{cl}+1-\text { loop }}(u, \bar{u}, \mathfrak{m})
$$

- The integrand has various singularities where chiral fields become massless
- There are fermionic zero modes

The two things nicely combine and the path integral reduces to an r-dimensional contour integral of a meromorphic form

$$
\frac{1}{|W|} \sum_{\mathfrak{m} \in \Gamma_{\mathfrak{h}}} \oint_{C} z_{\text {int }}(u, \mathfrak{m})
$$

The partition function

The classical and 1-loop contribution gives a meromorphic form

$$
Z_{\text {int }}(u, \mathfrak{m})=Z_{\text {class }} Z_{1 \text {-loop }}
$$

where

$$
\begin{gathered}
Z_{\text {class }}^{\mathrm{CS}}=x^{k \mathfrak{m}} \\
Z_{1 \text {-loop }}^{\text {chiral }}=\prod_{\rho \in \mathfrak{R}}\left[\frac{x^{\rho / 2}}{1-x^{\rho}}\right]^{\rho(\mathfrak{m})-q+1} \\
Z_{\text {1-loop }}^{\text {gauge }}=\prod_{\alpha \in G}\left(1-x^{\alpha}\right)(i d u)^{r}
\end{gathered}
$$

The partition function

The magnetic flux on S^{2} generates Landau levels. Massive bosons and fermions cancel in pairs, while zero modes

$$
\begin{array}{rll}
\rho(\mathfrak{m})-q+1 & \text { Fermi multiplets on } S^{1} & \rho(\mathfrak{m})-q+1<0 \\
\rho(\mathfrak{m})-q+1 & \text { Chiral multiplets on } S^{1} & \rho(\mathfrak{m})-q+1>0
\end{array}
$$

$$
Z_{1-\text { loop }}^{\text {chiral }}=\prod_{\rho \in \mathfrak{R}}\left[\frac{x^{\rho / 2}}{1-x^{\rho}}\right]^{\rho(\mathfrak{m})-q+1}
$$

The contour

$Z_{\text {int }}(u, \mathfrak{m})$ has pole singularities at

- along the hyperplanes $x^{\rho}=e^{i \rho(u)}=\mathbb{1}_{G}$ determined by the chiral fields
- at the boundaries of $H \times \mathfrak{h} \quad\left(\operatorname{Im}(u)= \pm \infty, x=e^{i u}=0, \infty\right)$

Supersymmetric localization selects a particular contour of integration C and picks some of the residues of the form $Z_{\text {int }}(u, \mathfrak{m})$.

The contour

Consider a $U(1)$ theory with chiral fields with charges Q_{i}. We can use the prescription: sum the residues

- at the poles of fields with positive charge, at $x=0$ if $k_{\text {eff }}(+\infty)<0$ and at $x=\infty$ if $k_{\text {eff }}(-\infty)>0$
where the effective Chern-Simons coupling is defined as

$$
k_{e f f}(\sigma)=k+\frac{1}{2} \sum_{i} Q_{i}^{2} \operatorname{sign}\left(Q_{i} \sigma\right)
$$

The contour

The prescription can be written in a compact form by using the so-called Jeffrey-Kirwan residue

$$
\underset{y=0}{\mathrm{JK}-\operatorname{Res}(Q, \eta) \frac{d y}{y}=\theta(Q \eta) \operatorname{sign}(Q), ~(Q)}
$$

as

$$
\frac{1}{|W|} \sum_{\mathfrak{m} \in \Gamma_{\mathfrak{b}}}\left[\sum_{x_{*} \in \mathfrak{M}_{\text {sing }}} \operatorname{JKK}_{x=x_{*}} \operatorname{Res}\left(Q\left(x_{*}\right), \eta\right) Z_{\text {int }}(x ; \mathfrak{m})+\underset{x=0, \infty}{\operatorname{JK-Res}}\left(Q_{x}, \eta\right) Z_{\text {int }}(x ; \mathfrak{m})\right]
$$

where

$$
Q_{x=0}=-k_{\text {eff }}(+\infty), \quad Q_{x=\infty}=k_{\text {eff }}(-\infty)
$$

Similar to the localization of the elliptic genus for 2d theories and of the Witten index in 1d [Benini, Eager, Hori, Tachikawa; Hori, Ki, Y, Y]

A Simple Example: $U(1)_{1 / 2}$ with one chiral

The theory has just a topological $U(1)_{T}$ symmetry: $J_{\mu}=\epsilon_{\mu \nu \tau} F_{\nu \tau}$

$$
\begin{aligned}
Z=\sum_{\mathfrak{m} \in \mathbb{Z}} \int \frac{d x}{2 \pi i x} x^{\mathfrak{t}}(-\xi)^{\mathfrak{m}} x^{\mathfrak{m} / 2}\left(\frac{x^{1 / 2}}{1-x}\right)^{\mathfrak{m}}=\frac{\xi}{(1-\xi)^{\mathfrak{t}+1}} \\
k_{\text {eff }}(\sigma)=\frac{1}{2}+\frac{1}{2} \operatorname{sign}(\sigma) \quad \rightarrow \quad Q_{x=0}=-1, Q_{x=\infty}=0
\end{aligned}
$$

Consistent with duality with a free chiral.

	$U(1)_{g}$	$U(1)_{T}$	$U(1)_{R}$
X	1	0	1
T	0	1	0
\tilde{T}	-1	-1	0

Aharony and Giveon-Kutasov dualities

The twisted index can be used to check dualities: for example, $U\left(N_{c}\right)$ with $N_{f}=N_{c}$ flavors is dual to a theory of chiral fields $M_{a b}, T$ and \tilde{T}, coupled through the superpotential $W=T \tilde{T} \operatorname{det} M$

$$
Z_{N_{f}=N_{c}}=\left(\frac{y}{1-y^{2}}\right)^{(2 \mathfrak{n}-1) N_{c}^{2}}\left(\frac{\xi^{\frac{1}{2}} y^{-\frac{N_{c}}{2}}}{1-\xi y^{-N_{c}}}\right)^{N_{c}(1-\mathfrak{n})+\mathfrak{t}}\left(\frac{\xi^{-\frac{1}{2}} y^{-\frac{N_{c}}{2}}}{1-\xi^{-1} y^{-N_{c}}}\right)^{N_{c}(1-\mathfrak{n})-\mathfrak{t}}
$$

Aharony and Giveon-Kutasov dual pairs for generic (N_{c}, N_{f}) have the same partition function.

Refinement by angular momentum

Adding a fugacity $\zeta=e^{i \varsigma / 2}$ for the angular momentum on S^{2} : the Landau zero-modes on S^{2} form a representation of $S U(2)$.

$$
Z_{1-\operatorname{loop}}^{\text {chiral }}=\prod_{\rho \in \mathfrak{M}} \prod_{j=-\frac{|B|-1}{2}}^{\frac{|B|-1}{2}}\left(\frac{x^{\rho / 2} \zeta^{j}}{1-x^{\rho} \zeta^{2 j}}\right)^{\operatorname{sign} B}
$$

$$
B=\rho(\mathfrak{m})-q_{\rho}+1
$$

As noticed in other contexts: the refined partition function factorizes into the product of two vortex partition functions

$$
Z=Z_{1 \text {-loop }} Z_{\text {vortex }}(\zeta) Z_{\text {vortex }}\left(\zeta^{-1}\right)
$$

Other dimensions

We can consider other dimensions too: $(2,2)$ theories in 2d on S^{2}

The BPS manifold is now $\mathfrak{M}=(\mathfrak{h} \times \mathfrak{h}) / W$ and the 1-loop determinants

$$
Z_{1-\text { loop }}^{\text {chiral }}=\prod_{\rho \in \mathfrak{R}}\left[\frac{1}{\rho(\sigma)}\right]^{\rho(\mathfrak{m})-q+1}
$$

$$
Z_{1 \text {-loop }}^{\text {gauge }}=(-1)^{\sum_{\alpha>0} \alpha(\mathfrak{m})} \prod_{\alpha \in G} \alpha(\sigma)(d \sigma)^{r}
$$

Other dimensions

We are just repackaging results about the A-twist of gauged linear sigma models
For examples, for $U(1)$ with N flavors, 2d amplitudes compute the quantum cohomology of \mathbb{P}^{N-1}

$$
\begin{aligned}
\left\langle\sigma_{1} \cdots \sigma_{n}\right\rangle=\sum_{\mathfrak{m}} \int \frac{d x}{2 \pi i} \frac{1}{x^{(\mathfrak{m}+1) N}} q^{\mathfrak{m}} x^{n}=\sum_{\mathfrak{m}} q^{\mathfrak{m}} \delta_{N(\mathfrak{m}+1)-n-1,0} \\
\sigma^{N}=q \\
\prod_{j=1}^{N}\left(\sigma-\mu_{j}\right)=q
\end{aligned}
$$

Ω - background and non abelian can be considered [see Cremonesi, Closse, Park, to appear]

Other dimensions

We can consider other dimensions too: $\mathcal{N}=1$ theories in 4 d on $S^{2} \times T^{2}$
The BPS manifold is now $\mathfrak{M}=(H \times H) / W$ and the 1 -loop determinants is elliptically generalized

$$
Z_{1 \text {-loop }}^{\text {chiral }}=\prod_{\rho \in \mathfrak{R}} \prod_{j=-\frac{|B|-1}{2}}^{\frac{|B|-1}{2}}\left(\frac{i \eta(q)}{\theta_{1}\left(q, x^{\rho} \zeta^{2 j}\right)}\right)^{\operatorname{sign}(B)}
$$

$$
Z_{1 \text {-loop }}^{\text {gauge, off }}=(-1)^{\sum_{\alpha>0} \alpha(\mathfrak{m})} \prod_{\alpha \in G} \frac{\theta_{1}\left(q, x^{\alpha} \zeta^{|\alpha(\mathfrak{m})|}\right)}{i \eta(q)}(d u)^{r}
$$

It can be tested against Seiberg's dualities.

Conclusions

We gave a general formula for the topologically twisted path integral of 3d $\mathcal{N}=2$ theories.

- Higher genus $S^{2} \rightarrow \Sigma$. Include Witten index
- 2d theories, Calabi-Yaus's and sigma-models
- Large N limit analysis of the matrix model
- AdS_{4} free-energy and entropy

