Hadrontherapy in 4D

Guido Baroni, Ph.D.
- Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di Milano
- Unità di Bioingegneria Clinica, Area Clinica, Fondazione CNAO
Presentation outline

Challenge of 4D therapy (respiratory correlated irradiation)
- X-ray radiotherapy inheritance
- Status and perspectives in particle therapy

4D treatment planning
- 4D imaging and motion modelling

4D dose delivery in particle therapy
- Experimental studies (local models)
- Prediction of daily anatomical changes (global models)

4D treatment verification
- Motion compensated in-vivo PET-based dosimetry
- 4D transmission imaging
Challenge: actively targeting a movable and deformable volume featuring variable kinematics and deformation patterns

- Combination of inter- and intra-fractional deviations
- **Tasks (on-the-fly):**
 1. **Target localization**
 2. **Treatment geometry adaptation** (beam direction, conformation)

Respiratory correlated (4D) therapy

![3D tumor traces on different weeks](image)

![Normalized amplitude](image)
Motion detection strategies
The X-ray radiotherapy heritage

✓ Direct tumor imaging
 ✓ Marker-based methods
 ✓ EM (CalypsoTM) [Balter et al. IJROBP 2005;61:933–37]
 ✓ Markerless
 ✓ Real-time X-ray image registration [Gendrin et al.
 \textit{Radiother Oncol} 2012; 102:274–80]

✓ Indirect tumor localization
 ✓ Correlation with surrogates
 ✓ Spirometric measurements [Hughes et al Radiother Oncol
 2009; 91: 336–41]
 ✓ Surface fiducials [Baroni et al., Radiother Oncol 2000;54:21–27]
(External) surrogates optical tracking and position correlation with inner anatomy is state of the art in photon therapy for:

- time resolved imaging for treatment planning
- breath-hold irradiation (motion suppression)
- respiratory gating (motion correlation, intermittent irradiation)
- tumor tracking (motion correlation, continuous irradiation)
Tumor tracking based on correlation models: the Cyberknife-Synchrony case

- Tumour tracking accuracy better than 1.5 mm [Kilby 2010]
- Correlation errors > 5 mm with breathing irregularities [Torshabi 2010]
Clinical effectiveness of tumor tracking (Cyberknife -Synchrony treatments)

(Riboldi et al, Lancet Oncol 2012)
From 4D X-ray to 4D hadrontherapy

- **4D imaging**
- **Treatment plan**
- **X-ray projections**
- **External surrogates + Correlation models**
- **Soft-tissue imaging**
- **Particle radiography**
- **Motion detection**

- **Magnet steering**
- **Lateral compensation**
- **Moving wedge**
- **Static wedge**
- **Depth compensation**
- **Offline PET imaging**
- **In-beam PET / prompt γ**
- **Treatment verification**
4D hadrontherapy

Current status

- Respiratory gating applied clinically with passive scattering (ext-int correlation)
- First cases with ion-beam active scanning reported for HCC patients (HIT) (ext-int correlation)
- No tumor tracking attempted clinically

Greatest caution motivated by

- 4D CT artefacts (uncertainties)
- Interplay effects (active scanning)
- Range uncertainties

What is needed

- Robust artefacts-free treatment planning
- Accurate tumor localization (local models)
- Estimation of daily global anatomical changes
Treatment planning: 4D CT artefacts

Motion monitoring in 4D CT based on **mono-dimensional signal**:

- uncertainties in breathing phase detection

 Additional contribution to motion artifacts (besides irregularities)
4D CT – multiple markers and data mining techniques

(RPM phase)

(RPM amplitude)

(Multiple markers)

(IR markers)

(Gianoli et al, Med Phys 2011)
4D CT based on surface optical tracking: enrich information on rib cage kinematics

- Extract the 3D trajectory of non-corrrespondent surface points acquired with optical systems (deformable mesh registration) (Amberg 2007; Schaerer 2012)
- Synthesis of a multi-regional respiratory motion model for robust image sorting and/or for respiratory correlated delivery

- Principal Component Analysis (PCA)
- K-means clustering
- Self-Organizing Maps (SOM)

<table>
<thead>
<tr>
<th></th>
<th>PCA</th>
<th>K-means</th>
<th>SOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson correlation coefficient*</td>
<td>0.90 ± 0.17</td>
<td>0.93 ± 0.06</td>
<td>0.91 ± 0.38</td>
</tr>
<tr>
<td>Root-mean-square error*</td>
<td>0.15 ± 0.10</td>
<td>0.11 ± 0.06</td>
<td>0.20 ± 0.12</td>
</tr>
</tbody>
</table>

Correlation with diaphragm motion (US) (median ± quartile)(5 subjects)
4D CT based on optical measurements: combining points and surface detection

- Novel system under development/testing combining real-time point-based with surface based acquisitions with high spatial and temporal resolution for redundant external surrogates acquisition. Applications in:
 - robust 4D CT (@CNAO early 2014)
 - combined/selectable point/surface patient set-up verification /respiratory gating / tumor tracking
Surrogate-less 4D MRI
Point-based motion modelling/model verification

Internal surrogate: MI

(...)

Guido Baroni, PhD
Application of correlation models for **real-time tumor tracking** in particle therapy:

1. **Experimental validation** with scanned beams in clinical like scenarios:
 - **local correlation models**: accurate target positioning and beam tracking against interplay effects

2. Development of **global 4D models**
 - **daily 4D CT** estimation to reduce beam range uncertainties
Correlation models in particle therapy

Experimental setup:

- **Robotic phantom**
 - Reproduces thorax breathing expansion and inner target motion
 - Regular / irregular target trajectories (baseline drift, phase shift)
- **Optical Tracking System** (OTS)
 - SMART-DX100 (BTS Bioengineering)
 - Measures passive markers onto the thorax (f = 100Hz)
 - Includes external / internal correlation models (ANN, State model)
- **Treatment Control System** (TCS)
 - Receives target position (direct / estimated)
 - Modulates (direction and energy) the incident beam
- **Dose measurement**
 - 20 ionization chambers inside the target

Guido Baroni, PhD
Commissioning of OTS / TCS integration:

- **Lateral** compensation (magnet steering in BEV)
- **Depth** compensation (dynamic wedge for energy adaptation)

(Fattori et al, TCRT, in press)
Accuracy of correlation models

<table>
<thead>
<tr>
<th></th>
<th>Regular State Model</th>
<th>Regular ANN Model</th>
<th>Baseline Drift State Model</th>
<th>Baseline Drift ANN Model</th>
<th>Phase Shift State Model</th>
<th>Phase Shift ANN Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOTION TYPE</td>
<td>HORAX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PERIOD [S]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TARGET MOTION PERIOD [S]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TARGET MOTION AMPLITUDE (CC, AP, LR) [MM]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BASELINE DRIFT (CC, AP, LR) [MM/S]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>4</td>
<td>21</td>
<td>8</td>
<td>25</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>263</td>
<td>255</td>
<td>276</td>
<td>276</td>
<td>277</td>
<td>283</td>
</tr>
<tr>
<td></td>
<td>0.42</td>
<td>0.61</td>
<td>0.51</td>
<td>1.03</td>
<td>0.62</td>
<td>1.23</td>
</tr>
<tr>
<td></td>
<td>0.34</td>
<td>0.27</td>
<td>0.41</td>
<td>0.78</td>
<td>0.49</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td>0.23</td>
<td>0.32</td>
<td>0.32</td>
<td>0.71</td>
<td>0.40</td>
<td>0.80</td>
</tr>
</tbody>
</table>

Phase shift | 3 | 2.975 | 10, 5, 5 | 0, 0, 0
Dosimetric results

Dose different wrt static irradiation

- Static irradiation = beam fixed, static target
 - Measurement of nominal delivered dose
- ‘Interplay’ = beam fixed, target moving
 - Measurement of «motion blurred» dose

(Seregni et al, PMB, 2013)
Experimental set-up (CNAO, December 2012)

- **Robotic phantom**
 - Custom moving phantom featuring correlated external and internal motion along an hysteretic trajectory (25 and 18 mm peak to peak in lateral and vertical direction)

- **Optical Tracking System (OTS)**
 - Measured passive markers onto the ribs and internal target for control (f = 100Hz)
 - Included external/internal correlation models (ANN, State model)

- **CNAO-Dose Delivery System (DD)**
 - Received target position (direct/estimated) through proprietary interface
 - Applied beam direction correction (in-plane) as a function of target position deviation

- **Dose measurement**
 - Films scanned with proton pencil beam (single square film, 60 mm side)
Dosimetric results (films)

<table>
<thead>
<tr>
<th>Acq 1</th>
<th>Acq 2</th>
<th>Acq 3</th>
<th>Acq 4</th>
<th>Acq 5</th>
<th>Acq 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static irradiation</td>
<td>OTS direct tracking</td>
<td>ANN prediction</td>
<td>State space model prediction</td>
<td>Interplay</td>
<td>Gating</td>
</tr>
</tbody>
</table>

Average flatness (omogeneity, [%])

<table>
<thead>
<tr>
<th>Acq 1</th>
<th>Acq 2</th>
<th>Acq 3</th>
<th>Acq 4</th>
<th>Acq 5</th>
<th>Acq 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5.7</td>
<td>6.6</td>
<td>6.1</td>
<td>24</td>
<td>9.5</td>
</tr>
</tbody>
</table>

Average penumbra (principal axes, [mm])

<table>
<thead>
<tr>
<th>Acq 1</th>
<th>Acq 2</th>
<th>Acq 3</th>
<th>Acq 4</th>
<th>Acq 5</th>
<th>Acq 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2</td>
<td>9</td>
<td>9</td>
<td>9.2</td>
<td>19</td>
<td>9.1</td>
</tr>
</tbody>
</table>

* Field size: 6.3 and 6.9 mm (principal directions) respectively
From local to global 4D models

- **Local** correlation models *(target)* experimentally assessed

- Need to evaluate **WEL variations** *(dosimetric changes)* outside the **target**

Global 4D model

adapt treatment planning 4D CT to the time of irradiation
Global 4D model: general framework

Model training

- 4D CT
- 10x CT

DIR

- Reference volume (Mid Position)

4D Model

- 4D DVF
- 3D + ϑ

Model estimate

current fraction

Respiratory motion parameters
- Phase ϑ(t)
- Amplitude α(t)
- Baseline (f)

\[
\hat{s}_{\vartheta,\alpha} = \bar{f} + \alpha D_{\vartheta}
\]

Estimated CT (ϑ, α, f)

(Vandemeulebroucke et al. 2009; Fassi et al. 2013)
CBCT studies

TREATMENT PLANNING

- **4D CT** image acquisition
 - Estimation of a patient-specific **breathing motion model**
 - baseline (s)
 - amplitude (α)
 - phase (θ)

PATIENT SETUP

- In-room **3D CBCT** image acquisition
 - Estimation of daily tumor **baseline**

DOSE DELIVERY

- Dynamic acquisition of thoraco-abdominal **surface displacement** with optical systems
 - Estimation of a **breathing surrogate**
 - Extraction of respiratory **amplitude** and **phase** parameters
 - **Update** of the 4D CT motion model
 - **Tumor motion** tracking

(Fassi et al, IJROBP, in press)
CBCT study: sample traces

* Pixel spacing of CBCT projections = 0.8 mm/pixel
CBCT study: overall results

Total tracking error:

→ RMS error of tumor tracking in the CBCT projection plane
Global 4D model: can we predict a daily 4D CT?

Modelling test
→ intrinsic model errors DIR

Tracking test
→ tracking accuracy evaluation

Rigid alignment Test
→ for comparison
Global 4D model: geometric results

<table>
<thead>
<tr>
<th>Patient</th>
<th>Experiment</th>
<th>Structure</th>
<th>COM distance [mm]</th>
<th>Hausdorff distance [mm]</th>
<th>Dice Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>GTV</td>
<td>Lungs</td>
<td>Trachea</td>
<td>Esophagus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GTV</td>
<td>Lungs</td>
<td>Trachea</td>
<td>Esophagus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GTV</td>
<td>Lungs</td>
<td>Trachea</td>
<td>Esophagus</td>
</tr>
<tr>
<td>P1</td>
<td>Modeling</td>
<td>0.40</td>
<td>0.42</td>
<td>0.36</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>Rigid</td>
<td>4.70</td>
<td>3.66</td>
<td>3.36</td>
<td>4.39</td>
</tr>
<tr>
<td></td>
<td>Tracking</td>
<td>1.58</td>
<td>0.78</td>
<td>1.01</td>
<td>0.84</td>
</tr>
<tr>
<td>P2</td>
<td>Modeling</td>
<td>0.51</td>
<td>0.15</td>
<td>0.46</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td>Rigid</td>
<td>2.30</td>
<td>2.49</td>
<td>1.28</td>
<td>1.07</td>
</tr>
<tr>
<td></td>
<td>Tracking</td>
<td>1.82</td>
<td>1.05</td>
<td>1.98</td>
<td>0.96</td>
</tr>
<tr>
<td>P3</td>
<td>Modeling</td>
<td>0.13</td>
<td>0.14</td>
<td>0.34</td>
<td>1.19</td>
</tr>
<tr>
<td></td>
<td>Rigid</td>
<td>1.28</td>
<td>1.68</td>
<td>3.73</td>
<td>2.63</td>
</tr>
<tr>
<td></td>
<td>Tracking</td>
<td>0.87</td>
<td>2.78</td>
<td>2.19</td>
<td>2.09</td>
</tr>
<tr>
<td>P4</td>
<td>Modeling</td>
<td>0.52</td>
<td>0.15</td>
<td>0.45</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td>Rigid</td>
<td>3.93</td>
<td>2.63</td>
<td>1.57</td>
<td>1.75</td>
</tr>
<tr>
<td></td>
<td>Tracking</td>
<td>1.26</td>
<td>0.41</td>
<td>0.65</td>
<td>1.17</td>
</tr>
</tbody>
</table>

Tracking Test:
- Localization error (COM) = 1.4 mm (GTV), 1.3 \(\div\) 1.5 mm (OARs)
- Contour surface distance (Hausdorff) = 0.55 mm (GTV), 0.57 \(\div\) 0.53 mm (OARs)
- Volume overlap (Dice) = 0.83 (GTV), 0.87 \(\div\) 0.93 (OARs)
Global 4D model: HU difference

A) Motion state identification error

Patient P1

Patient P2

Patient P3

Patient P4

B) HU difference

Modeling

Rigid alignment

Tracking
Global 4D model: WEL results

Quantification of range variations

\[\Delta WEL \text{ calculation} \]
Global 4D model: WEL results

A) Mean absolute ΔWEL

- **Rigid alignment Test**

 $|\Delta WEL| = 1.6 \div 7.8$ mm
 mean(ΔWEL (GTV)) $\neq 0$ mm
 → Systematic variations

- **Tracking Test:**

 $|\Delta WEL| = 0.7 \div 1.4$ mm
 mean(ΔWEL (GTV)) ≈ 0 mm
 → NO systematic variations

B) Signed ΔWEL distribution

- **Overshoot**
- **Undershoot**
1. **Local correlation models** validated experimentally in scanned particle therapy
 - RMS tracking error < 1.5 mm
 - few % dosimetric deviation wrt static irradiation

2. **Global 4D models** can predict anatomy changes (preliminary)
 - Results are patient dependent
 - Systematic WEL variations can be compensated
4D treatment verification

Motion compensated PET imaging

- Off-line PET-based treatment verification for moving target
 - reduced count statistics due to time delay before acquisition
 - reduced count statistics due to 4D acquisition

illegible 4D PET images from commercial scanners
4D treatment verification

Motion compensated PET imaging: alternative strategies

✓ 4D MLEM (motion compensation through DIR in image domain)
✓ “4D Virtual PET” (Gianoli et al, TCRT, in press)
✓ Pre-reconstruction sinogram warping (anticipated motion compensation in sinogram domain)

![Image of PET imaging results](image.png)

Ideal PET image (NCAT phantom) SW-MLEM 4D-MLEM

free-breathing PET 4D-MLEM

virtual 4D PET SW-MLEM
Simulated 4D transmission imaging (image contrast through lung masking for lesion detection)

(courtesy of J. Seco)

(courtesy of MF Spadea)
4D eye motion monitoring (under development)

✓ Infra-red eye tracking technique for real-time 3D clipless eye motion monitoring (Fassi et al. JBO, 2012)
Acknowledgments

Chiara Paganelli Marco Donetti Katia Parodi Christoph Bert
Matteo Seregni Luciano Capasso Christopher Kurz Nami Saito
Aurora Fassi Flavio Marchetto Julia Bauer Robert Kaderka
Andrea Pella Alfredo Mirandola Ilaria Rinaldi Anna Costantinescu
Giovanni Fattori Mario Ciocca Marco Durante Joël Schaarer
Chiara Gianoli Marta Peroni Roberto Orecchia Mathieu Fernandes
Pietro Cerveri Marco Riboldi Guido Baroni, PhD
Riccardo Via ULICE Mathieu Fernandes David Sarrut
Thank you

www.cartcas.polimi.it