

Outline

Search for New Physics

Indirect measurements of New Physics

- New particles can appear as virtual particles in loop and penguin diagrams.
- Indirect searches can have a higher sensitivity to effects from new particles.
 - See NP effects before the direct searches.
 - Indirect measurements can access higher scales.
- Good chance to see NP appear first in loop or penguin diagrams
- Possible to measure the phases of the new couplings
 - Gives access to the flavour structure of NP.

→ Complementary to direct searches.

Search for New Physics

Two approaches for NP searches in heavy flavour decays

- 1. Transitions involving flavour-changing, neutral currents (FCNC).
 - Forbidden at tree level in SM: can be easily modified by New Physics.
 - Especially in $b \rightarrow s$ transitions (not so much constrained by current data).
 - Some NP models predict large deviations in FCNC transitions.
 - Add new long-distance operators.
 - Modify short-distance to Wilson coefficients.
 - Exploring rare *B* and *D* decays. For instance:
 - Branching ratio of $B_s \to \mu^+ \mu^-$ and $D^0 \to \mu^+ \mu^-$.
 - Helicity structure of $B_d \rightarrow \mu^+ \mu^- K^*$ decays.

Search for New Physics

Two approaches for NP searches in heavy flavour decays

2. Metrology of the CKM matrix

- Improve precision on current constraints
 - Current measurements consistent, but still open to O(10-20%) corrections.
- Compare measurements which may or may not have NP contributions.
 - Explore CKM matrix in many different ways and search for inconsistencies.
- Unitarity triangle not so much constrained from tree decays.
 - Tree decays not affected by New Physics.
 - E.g., a NP free measurement of γ to nail down SM & gain sensitivity to NP.

BEACH 2010, 22.06.2010

LHCb detector

LHCb made for Heavy Flavour physics

- Good vertex resolution
 - Time-dependent measurements.
 - Suppress background from prompt decays.
- Good particle identification
 - Important for trigger, flavour tagging
 - Suppress background.
- Good momentum resolution
 - Mass resolution of heavy flavours.
 - Suppress background.

LHCb can reach its design luminosity very early.

→ See talk of Sebastian Bachmann for a nice overview of LHCb.

Integrated luminosity

Integrated Lumi over Time at 3.5 TeV

Recorded now: 0.014 pb⁻¹

Expected this year: 200 pb⁻¹

Expected end of 2010-11 run: 1000 pb⁻¹ (1 fb⁻¹)

First signs of B hadrons

Fingerprints from long-lived B decays

First exclusive B candidate

Mixing-induced \mathcal{P} in $B_s \to J/\psi \varphi$

- Measures B_s mixing phase through $b \rightarrow c\bar{c}s$ decay
 - Mixing phase: $\varphi_s^{SM} = -2\beta_s$
 - Small penguin pollution.
 - B_s counterpart of $B_d \rightarrow J/\psi K^0$.
- Mixing phase small in SM: $2\beta_s = 0.036 \ 0.002$
 - New particles in box diagrams can modify measured phase $\varphi_s = \varphi_s^{SM} + \varphi_s^{NP}$

Experimental challenges:

- Requires flavour tagging:
 - Mistag rate: ω ~33%, tagging power ε ~6%.
- Requires accurate measurement of decay time (to resolve oscillations).
 - Time dependent fit with resolution ~ 40 fs.
- Requires angular analysis
 - See next slide.

Mixing-induced \mathcal{P} in $B_s \to J/\psi \varphi$

Angular analysis

P→*VV* decay: requires angular analysis to disentangle CP-even and CP-odd final states.

Use control channels to check angular acceptance description:

- $B^+ \rightarrow J/\psi K^+$
- $B \rightarrow J/\psi K^*$

In addition, include pure CP eigenmodes (e.g. $B_s \to J/\psi f_0, \eta, \eta'$) as cross-check. \to No angular analysis needed.

Mixing-induced P in $B_s \rightarrow J/\psi \varphi$

Next step: the first $B_s \to J/\psi \varphi$ candidate...

Mixing-induced \mathcal{P} in $B_s \to J/\psi \varphi$

(rad)

Expect 50k events in 1 fb⁻¹

LHCb's sensitivity

 $\sigma(\varphi_{\rm s})$ with 0.2 fb⁻¹ 0.14 $\sigma(\varphi_{\rm s})$ with 1.0 fb⁻¹ 0.07

Note that sensitivity from $B_s \rightarrow J/\psi f_0(980)$ could be similar, depending on BR.

- Very rare decay. Prediction in SM: BR = $(3.35 0.32)x10^{-9}$ [hep-ph/0604057v5]
- Sensitive to New Physics:
 - E.g. branching ratio in MSSM enhanced by sixth power of tanβ:

BR
$$(B_s \to \mu^+ \mu^-) = 5 \times 10^{-7} \left(\frac{\tan \beta}{50} \right)^6 \left(\frac{300 \text{GeV}}{M_A} \right)^4$$

• Present limit from CDF (3.7 fb⁻¹):

BR <
$$3.6 \times 10^{-8}$$
 (90% CL).

The decay $B_s \rightarrow \mu^+ \mu^-$ provides sensitive probe for New Physics.

Selection strategy

- Select signal in a 3D-box of
 - Invariant mass
 - Geometrical likelihood
 - PID likelihood
- → Uncorrelated variables with different control samples

→ Invariant mass

• Detailed studies done with K_s and J/ψ .

	$K_s \rightarrow \pi\pi$		$J/\psi \!\!\! ightarrow \!\!\! \mu \mu$	
Data	3.47	0.13 MeV	15.4	0.43 MeV
MC	3.31	0.12 MeV	13.12	0.05 MeV

Dominated by Dominated by momenopening angle tum of daughters

- Ultimately, use kinematically similar decays $B_s \to K^+K^-$ (and $K\pi$, $\pi\pi$).
 - B_s mass resolution from MC ~ 20 MeV

Points: MC $B_s \rightarrow \mu^+\mu^-$ mass

Red curve: from $B_s \rightarrow K^+K^-$ Blue curve:from $B_s \rightarrow K^+K^-$ (with correction for PID)

- All studies on data so far indicate that sensitivity from MC is realistic.
- Use known channels to determine BR from event yield
 - $B \rightarrow K\pi$ and $B^+ \rightarrow J/\psi K^+$
- BR(B_s→ μ⁺μ⁻) can be calculated as:

$${\rm BR_{cal}} \times \frac{\epsilon_{\rm cal}^{\rm REC} \epsilon_{\rm cal}^{\rm SEL|REC} \epsilon_{\rm cal}^{\rm TRIG|SEL}}{\epsilon_{\rm sig}^{\rm REC} \epsilon_{\rm sig}^{\rm SEL|REC} \epsilon_{\rm sig}^{\rm TRIG|SEL}} \times \frac{f_{\rm cal}}{f_{B_s^0}} \times \frac{N_{B_s^0 \to \mu^+ \mu^-}}{N_{\rm cal}} \times$$

Production ratio known to 13%. Extract ratio from data using $B_s \rightarrow D_s \pi$ and $B \rightarrow D^+ K^-$

 $0.2 \text{ fb}^{-1} \rightarrow \text{ improve on expected Tevatron limit.}$ $1.0 \text{ fb}^{-1} \rightarrow \text{ exclude BR down to } 7x10^{-9}$ or observe 5σ signal if BR = $3.5 \times SM$. (Need 10 fb⁻¹ at 14 TeV to observe 5σ signal if BR = SM)

Asymmetries in $B_d \rightarrow \mu^+ \mu^- K^*$

- $B_d \rightarrow \mu^+ \mu^- K^*$ rare decay in the SM.
 - BR $(B_d \to l^+ l^- K^*) \sim 1.0 \times 10^{-6}$
- SM diagrams (can be easily modified in presence of NP):

- Angular distributions contain a lot of information.
 - Many observables sensitive to NP
- For first data focus on forward-backward asymmetry: $A_{FB}(q^2)$.
- Zero crossing point of A_{FB} well predicted in SM (minimize hadronic uncertainties).
 - Measures ratio Wilson coefficients C₉/C₇.
- Sensitive to SUSY, graviton exchanges, extra dimensions...

Asymmetries in $B_d \rightarrow \mu^+ \mu^- K^*$

Estimated error on A_{FB} : in most sensitive bin (1–6 GeV²):

0.1 fb⁻¹: $\sigma(A_{FB})=0.20$

SM exclusion assuming central value from Belle in most sensitive bin

Asymmetries in $B_d \rightarrow \mu^+ \mu^- K^*$

Estimated error on A_{FB} : in most sensitive bin (1–6 GeV²):

0.1 fb⁻¹: $\sigma(A_{FB})$ =0.20 0.3 fb⁻¹: $\sigma(A_{FB})$ =0.12

1.0 fb⁻¹: $\sigma(A_{FB})=0.07$ (end of 2011)

SM exclusion assuming central value from Belle in most sensitive bin

CKM angle γ from tree B decays

 γ is the least well-known CKM angle

<u>Current experimental status</u>:

- From direct measurements with $B \rightarrow DK$ decays: $\gamma = (73^{+22}_{-25})$ ([BaBar] and [Belle])
- From SM fit using only indirect measure-

ments: $\gamma = (67.7^{+4.5}_{-3.7})$ [CKMfitter Beauty09]

- Diagrams with $b \rightarrow c$ and $b \rightarrow u$ transitions \rightarrow sensitive to γ .
- Use only tree diagrams to allow clean (NP free) extraction of γ .

$\square B^{+/0} \rightarrow D^0 K^{+/*}$

- Measures γ directly through interference between B and subsequent D decay.
- Counting experiment. Measure relative decay rates.
 - ADS+GLW method ($D^0 \rightarrow K\pi, KK, \pi\pi, K\pi\pi\pi$)
 - GGSZ (Dalitz) method (D⁰→K_Sππ)

$\square B_s \rightarrow D_s K$

- Measures γ -2 β_s through interference between mixing and decay.
 - Mixing phase $2\beta_s$ from $B_s \rightarrow J/\psi \varphi$
- Golden mode, but requires flavour tagging and time-dependent analysis.

CKM angle γ from tree B decays

γ is the least well-known CKM angle

<u>Current experimental status:</u>

- From direct measurements with $B \rightarrow DK$ decays: $\gamma = (73^{+22}_{-25})$ ([BaBar] and [Belle])
- From SM fit using only indirect measurements: $\gamma = (67.7^{+4.5}_{-3.7})$ [CKMfitter Beauty09]
- Diagrams with $b \rightarrow c$ and $b \rightarrow u$ transitions \rightarrow sensitive to γ .
- Use only tree diagrams to allow clean (NP free) extraction of γ .

$\square B^{+/0} \rightarrow D^0 K^{+/*}$

- Measures γ directly through interference between B and subsequent D decay.
- Counting experiment. Measure relative decay rates.
 - *ADS+GI Combined sensitivity ~7° for 1 fb⁻¹.
- $\square B_{c} \rightarrow D_{c}K$
 - Measures γ -2 β_s through interference between mixing and decay.
 - Mixing phase $2\beta_s$ from $B_s \rightarrow J/\psi \varphi$
 - Golden mode, but requires flavour tagging and time-dependent analysis.

CKM angle γ from tree B decays

First two channels of the $B\rightarrow DX$ family observed.

Signal by combining $B^0 \rightarrow D^+ \pi^-$ and $B^+ \rightarrow D^0 \pi^+$

Expect soon

- $B_s \rightarrow D_s \pi^-$
- $B \rightarrow DK$ (Cabibbo favoured)

Charm physics

LHCb has excellent potential for charm physics

- Dedicated HLT trigger line for $D^{*+} \rightarrow D^{0}(hh')\pi^{+}$
 - Yield of O(10⁸) events per fb⁻¹
 - Flavour tag from charge of pion.
- D^0 time resolution ~0.040 ps (from MC).

→ See talk of Matthew Charles on open charm and charmonium in LHCb

Charm physics

Charming opportunities in 2010-11 run

- ☐ Mixing parameters and possible CP violation effects.
 - CP violation would indicate New Physics.
 - Lifetime ratio CP mixed and CP even decays (y_{CP}).
 - Expect $17x10^6$ ($D \rightarrow K\pi$; CP mixed) and $1.3x10^6$ ($D \rightarrow KK$; CP even) in 0.1 fb⁻¹.
 - Measurement of oscillation in wrong sign $D \rightarrow K\pi$.
 - Expect 60x10³ in 0.1 fb⁻¹
- ☐ Direct CPV in single-Cabibbo-suppressed decays.
 - Dalitz analysis with $D^+ \rightarrow K^+ K^- \pi^+$
 - Model independent
 - Not sensitive to production asymmetries.
 - Expect several millions of events in 0.1 fb⁻¹.

- Highly suppressed in SM: BR~3x10⁻¹³
- Can be significantly enhanced by NP.
- Current experimental limit BR < 1.4x10⁻⁷ @ 90% CL [Belle]
- Similar analysis as $B_s \rightarrow \mu^+ \mu^-$
- Expected limit LHCb for 0.1 fb⁻¹: BR < $4x10^{-8}$ @ 90% CL.

Conclusion

