Applying Efimov physics to few-nucleon systems

A. Kievsky

INFN, Sezione di Pisa (Italy)

The 8th International Workshop on Chiral Dynamics Pisa 29 June-3 July 2015

In collaboration with M. Gattobigio (INLN)

A. Kievsky (INFN-Pisa)

Efimov physics in few-nucleon systems

CD2015, June 2015 1 / 20

Applying Efimov physics to few-nucleon systems

A. Kievsky

INFN, Sezione di Pisa (Italy)

The 8th International Workshop on Chiral Dynamics Pisa 29 June-3 July 2015

In collaboration with M. Gattobigio (INLN)

A D N A B N A B N A B N

Preliminaries: low energy n - d scattering

Why there is a curvature in the effective range function?

A. Kievsky (INFN-Pisa)

Efimov physics in few-nucleon systems

Preliminaries: low energy n - d scattering

Why there is a curvature in the effective range function?

A. Kievsky (INFN-Pisa)

Efimov physics in few-nucleon systems

Universality in atom-dimer scattering Efimov Theory: Zero-Range Theory for three bosons

$$E_3^n/(\hbar^2/ma^2) = \tan^2 \xi$$

$$\kappa_* a = e^{\pi (n-n_*)/s_0} e^{-\Delta(\xi)/2s_0}/\cos \xi$$

- a is the two-body scattering length
- κ_{*} is the three-body parameter
- $\Delta(\xi)$ is an universal function

Efimov Theory: atom-dimer scattering length

 $a_{AD} = a(d_1 + d_2 \tan[s_0 \ln(\kappa_* a) + d_3])$ (Efimov 1979) with d_1, d_2, d_3 universal constants (Braaten and Hammer, 2006)

Efimov Theory: atom dimer effective range

 $ka \cot \delta_{AD} = c_1(ka) + c_2(ka) \cot[s_0 \ln(\kappa_*a) + \phi(ka)]$ with c_1, c_2, ϕ universal functions

Universal Effective Range Function

 $ka \cot \delta_{AD} = c_1(ka) + c_2(ka) \cot[s_0 \ln(\kappa'_*a) + \phi(ka)]$

A. Kievsky (INFN-Pisa)

Efimov physics in few-nucleon systems

э

Zero-Range vs. Finite-Range (three-body system)

zero-rangefinite-range $E_3/(\hbar^2/ma^2) = E_3/E_2 = \tan^2 \xi$ $E_3/(\hbar^2/ma^2_B) = E_3/E_2 = \tan^2 \xi$ $\kappa_* a = \frac{1}{\cos \xi} e^{-\Delta(\xi)/2s_0}$ $\kappa_* a_B = \frac{1}{\cos \xi} e^{-\tilde{\Delta}(\xi)/2s_0}$

M. G. and A. K., PRA 90, 012502 (2014)

 $\frac{1}{\cos\xi}e^{-\Delta(\xi)/2s_0} = \frac{1}{\cos\xi}e^{-\tilde{\Delta}(\xi)/2s_0} + \Gamma$ or

 $2s_0\Gamma = \tan \tilde{\phi} - \tan \phi$

with $an \phi, an \widetilde{\phi}$ the derivatives of $\Delta(\xi), \widetilde{\Delta}(\xi)$ at $\xi = -\pi/2$

(日)

Zero-Range vs. Finite-Range (three-body system)

zero-rangefinite-range $E_3/(\hbar^2/ma^2) = E_3/E_2 = \tan^2 \xi$ $E_3/(\hbar^2/ma^2_B) = E_3/E_2 = \tan^2 \xi$ $\kappa_* a = \frac{1}{\cos \xi} e^{-\Delta(\xi)/2s_0}$ $\kappa_* a_B = \frac{1}{\cos \xi} e^{-\tilde{\Delta}(\xi)/2s_0}$

M. G. and A. K., PRA 90, 012502 (2014) $\frac{1}{\cos\xi}e^{-\Delta(\xi)/2s_0} = \frac{1}{\cos\xi}e^{-\tilde{\Delta}(\xi)/2s_0} + \Gamma$ or $2s_0\Gamma = \tan\tilde{\phi} - \tan\phi$ with $\tan\phi$, $\tan\tilde{\phi}$ the derivatives of $\Delta(\xi)$, $\tilde{\Delta}(\xi)$ at $\xi = -\pi/2$

CD2015, June 2015 6 / 20

Zero-Range vs. Finite-Range (three-body system)

zero-range

finite-range

$$K_3 a = K_3/K_2 = \tan \xi
\kappa_* a = \frac{1}{\cos \xi} e^{-\Delta(\xi)/2s_0}$$

$$K_3 a_B = K_3/K_2 = \tan \xi
\kappa_* a_B = \frac{1}{\cos \xi} e^{-\tilde{\Delta}(\xi)/2s_0}$$

$$\frac{1}{\cos\xi} e^{-\Delta(\xi)/2s_0} = \frac{1}{\cos\xi} e^{-\tilde{\Delta}(\xi)/2s_0} + \Gamma$$
or
$$\kappa_*(a - a_B) = \Gamma$$

$$\mathbf{a} - \mathbf{a}_B = \frac{1}{\kappa_*} = \mathbf{r}_* \approx \text{constant}$$
 (at equal values of ξ)

Varying the depth of a potential around the unitary limit, the results can be reproduced by a two-parameter potential (as a gaussian) which produces an equivalent universal function, $\tilde{\Delta}(\xi)$, rotated with respect to the universal zero-range function $\Delta(\xi)$.

How constant is Γ ?

$$\kappa_* a_B (1 + \frac{\Gamma}{\kappa_* a_B}) = \frac{1}{\cos \xi} e^{-\Delta(\xi)/2s_0} = y(\xi)$$
$$1 + \frac{r_*}{a_B} = y(\xi)/\kappa_* a_B$$

A. Kievsky (INFN-Pisa)

3

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

1/2-spin 1/2-isospin fermions close to the unitary limit

The 2N system in s-wave

This is a two-channel system with spin S = 0 and S = 1. For two nucleons the physical values are:

 $E_d = -2.2245 \text{ MeV}, a_B = 4.318 \text{ fm}$

 $a_0 = -23.740 \pm 0.020 \text{ fm}$ $r_0^{\text{eff}} = 2.77 \pm 0.05 \text{ fm}$

 $a_1 = 5.424 \pm 0.003 \text{ fm}$ $r_1^{\text{eff}} = 1.760 \pm 0.005 \text{ fm}$

• The S = 1 channel:

• The S = 0 channel:

a gaussian $V_0 e^{-r^2/r_1^2}$ is used with V_0 fixed to describe a_1/a_0

1/2-spin 1/2-isospin fermions close to the unitary limit

The 2N system in s-wave

This is a two-channel system with spin S = 0 and S = 1. For two nucleons the physical values are:

 $E_d = -2.2245 \text{ MeV}, a_B = 4.318 \text{ fm}$

 $a_0 = -23.740 \pm 0.020 \text{ fm}$ $r_0^{\text{eff}} = 2.77 \pm 0.05 \text{ fm}$

 $a_1 = 5.424 \pm 0.003 \text{ fm}$ $r_1^{\text{eff}} = 1.760 \pm 0.005 \text{ fm}$

moving the system to the unitary limit

• The S = 1 channel:

a gaussian $V_1 e^{-r^2/r_1^2}$ with V_0 and r_1 fixed to describe a_1 and a_2 V_1 is varied: this path has the value $r_B = a_1 - a_B$ almost constant. For nuclear physics we have $r_B \approx 1.2$ fm

1/2-spin 1/2-isospin fermions close to the unitary limit

The 2N system in s-wave

This is a two-channel system with spin S = 0 and S = 1. For two nucleons the physical values are:

 $E_d = -2.2245 \text{ MeV}, a_B = 4.318 \text{ fm}$

 $a_0 = -23.740 \pm 0.020 \text{ fm}$ $r_0^{\text{eff}} = 2.77 \pm 0.05 \text{ fm}$

 $a_1 = 5.424 \pm 0.003 \text{ fm}$ $r_1^{\text{eff}} = 1.760 \pm 0.005 \text{ fm}$

moving the system to the unitary limit

• The S = 1 channel:

a gaussian $V_1 e^{-r^2/r_1^2}$ with V_0 and r_1 fixed to describe a_1 and a_B V_1 is varied: this path has the value $r_B = a_1 - a_B$ almost constant. For nuclear physics we have $r_B \approx 1.2$ fm

• The S = 0 channel:

a gaussian $V_0 e^{-r^2/r_1^2}$ is used with V_0 fixed to describe a_1/a_0 constant

CD2015, June 2015 10 / 20

Three-body spectrum with spin-isospin symmetry

zero-range

finite-range

 $K_3 a = K_3/K_2 = \tan \xi$ $\kappa_* a = \frac{1}{\cos \xi} e^{-\Delta(\xi)/2s_0}$

$$\begin{aligned} & \mathsf{K}_3 \mathsf{a}_B = \mathsf{K}_3/\mathsf{K}_2 = \tan \xi \\ & \kappa_* \mathsf{a}_B = \frac{1}{\cos \xi} \, \mathrm{e}^{-\tilde{\Delta}(\xi)/2s_0} \end{aligned}$$

$$rac{1}{\cos\xi}\mathrm{e}^{-\Delta(\xi)/2s_0}=rac{1}{\cos\xi}\mathrm{e}^{- ilde{\Delta}(\xi)/2s_0}-\lceil$$

then the spectrum results

$$K_3 a = K_3/K_2 = \tan \xi$$

$$\kappa_* a_B + \Gamma = \frac{1}{\cos \xi} e^{-\Delta(\xi)/2s_0} = y(\xi)$$

with

$$\Gamma = \Gamma(a_0/a_1)$$

determining Γ for three bosons $\Gamma(1) \approx 0.8$ in the nuclear plane $\Gamma(a_0/a_1 = -4.3) \approx -0.2$

CD2015, June 2015 12 / 20

CD2015, June 2015 13 / 20

Comments on the two-channel plot

- Studying a three-boson system using finite-range potentials, the first excited state does not dispapear onto the two-body threshold
- In the two-channel system the excited state disappears on the two-body threshold as the ratio a₀/a₁ varies.
- The analysis of the nuclear plane produces a binding energy at the unitary limit of $E_u \approx 3.6$ MeV.
- However at the nuclear point the binding energy of $E_3 \approx 10.2$ MeV is far from the experimental value of 8.5 MeV
- A three-body force has to be included
- using a more realistic potential model and varying the depth, the unitary limit can be reached.
- The value obtained has been $E_u \approx 2.8$ MeV.

Working on the nuclear point

The 2N sector

Low Energy data: $E_d = -2.2245 \text{ MeV}$ $a_1 = 5.424 \pm 0.003 \text{ fm}$ $a_0 = -23.740 \pm 0.020 \text{ fm}$ $r_0^{eff} = 2.77 \pm 0.05 \text{ fm}$

Constructing LO 2N potential

Two parameters corresponding to the I = 0 partial waves with S = 0, 1: $V_0(r) = -V_0 e^{-r^2/r_0^2}, V_1(r) = -V_1 e^{-r^2/r_1^2}$

V ₀ [MeV]	<i>r</i> ₀ [fm]	<i>a</i> ₀[fm]	r ₀ ^{eff} [fm]	V ₁ [MeV]	<i>r</i> ₁ [fm]	<i>a</i> ₁[fm]	r ₁ ^{eff} [fm]
53.255	1.40	-23.741	2.094	79.600	1.40	5.309	1.622
42.028	1.57	-23.745	2.360	65.750	1.57	5.423	1.776
40.413	1.60	-23.745	2.407	63.712	1.60	5.447	1.802
37.900	1.65	-23.601	2.487	60.575	1.65	5.482	1.846
33.559	1.75	-23.745	2.644	55.036	1.75	5.548	1.930
30.932	1.82	-23.746	2.756				

Working on the nuclear point

The 3N sector

V_0 [MeV]	<i>r</i> ₀ [fm]	V ₁ [MeV]	<i>r</i> ₁ [fm]	E_3^0 [MeV]	E_3^1 [MeV]	² a _{nd} [fm]
53.255	1.40	79.600	1.40	-12.40	-2.191	-2.175
42.028	1.57	65.750	1.57	-10.83	-2.199	-1.236
40.413	1.60	63.712	1.60	-10.59	-2.197	-1.097
37.900	1.65	60.575	1.65	-10.22	-2.199	-0.860
33.559	1.75	55.036	1.75	-9.584	-2.201	
30.932	1.82	65.750	1.57	-9.715		-0.285
Exp.				-8.482		0.645 ± 0.010

Introducing a Three-Body Force

We choose a simple (two-parameter) form:

$$W(\rho) = W_0 e^{-\rho^2/\rho_0^2}$$

with $ho^2 = rac{2}{3}(r_{12}^2 + r_{23}^2 + r_{31}^2)$ W_0 and ho_0 fixed to describe $E(^{3}\text{H})$ and $^2a_{no}$

Working on the nuclear point

The 3N sector

V_0 [MeV]	<i>r</i> ₀ [fm]	V ₁ [MeV]	<i>r</i> ₁ [fm]	E_3^0 [MeV]	E_3^1 [MeV]	² a _{nd} [fm]
53.255	1.40	79.600	1.40	-12.40	-2.191	-2.175
42.028	1.57	65.750	1.57	-10.83	-2.199	-1.236
40.413	1.60	63.712	1.60	-10.59	-2.197	-1.097
37.900	1.65	60.575	1.65	-10.22	-2.199	-0.860
33.559	1.75	55.036	1.75	-9.584	-2.201	
30.932	1.82	65.750	1.57	-9.715		-0.285
Exp.				-8.482		0.645 ± 0.010

Introducing a Three-Body Force

We choose a simple (two-parameter) form:

$$W(\rho) = W_0 \mathrm{e}^{-\rho^2/\rho_0^2}$$

with $\rho^2 = \frac{2}{3}(r_{12}^2 + r_{23}^2 + r_{31}^2)$ W_0 and ρ_0 fixed to describe $E(^{3}H)$ and $^{2}a_{nd}$

$$V(r) = [V(S=1)+V(S=0)] * exp(-r^{2}/r_{1}^{2}) + W_{0} * exp(-\rho^{2}/\rho_{0}^{2})$$

A. Kievsky (INFN-Pisa)

Efimov physics in few-nucleon system

CD2015, June 2015 17 / 20

The N=4 ground and excited state

Summary of the LO potential $2a_{nd}$ LO $B(^{3}H)$ $B(^{3}\text{He})$ $B(^{3}\text{He}^{*})$ E_d -2.225 -8.480 -28.41-8.29 0.652 Exp. -2.225-8.482 -28.296 -8.10 0.645

A=3 low energy scattering

No bad for a 4-parameter 2*N* potential + 2-parameter 3*N* potential! next step (in progress) \rightarrow ⁶He and ⁶Li ground states

A. Kievsky (INFN-Pisa)

Efimov physics in few-nucleon system

CD2015, June 2015 19 / 20

Conclusions

- A path matching a physical point to the unitary limit has been analyzed
- Varying the depth of the potential the quantity r_B = a a_B remains almost constant
- Along this path different scale can be joined
- Finite-range effects have been analyzed
- Using this procedure a 1/2-spin 1/2-isospin fermion system has been studied
- A detailed study on the nuclear physics point has been performed with gaussian potentials
- Including a three-body force the doublet n d scattering length and the four-nucleon system have been studied
- Work in progress: extension to A > 4

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Conclusions

- A path matching a physical point to the unitary limit has been analyzed
- Varying the depth of the potential the quantity r_B = a a_B remains almost constant
- Along this path different scale can be joined
- Finite-range effects have been analyzed
- Using this procedure a 1/2-spin 1/2-isospin fermion system has been studied
- A detailed study on the nuclear physics point has been performed with gaussian potentials
- Including a three-body force the doublet n d scattering length and the four-nucleon system have been studied
- Work in progress: extension to A > 4