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Preliminaries: low energy n − d scattering

Effective range formula

k cot δnd =
−

1
and

+ 1
2 rsk2

1 + k2/k2
0

Ep =
3
4
(~2/m)k2

0

and ≈ 0.7 fm

Ep ≈ 160 keV

rs ≈ −127 fm

C.R. Chen et al., PRC39, 1261 (1989)
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Universality in atom-dimer scattering
Efimov Theory: Zero-Range Theory for three bosons

En
3 /(~2/ma2) = tan2 ξ

κ∗a = eπ(n−n∗)/s0 e−∆(ξ)/2s0/ cos ξ

a is the two-body scattering length

κ∗ is the three-body parameter

∆(ξ) is an universal function

Efimov Theory: atom-dimer scattering length

aAD = a(d1 + d2 tan[s0 ln(κ∗a) + d3]) (Efimov 1979)

with d1, d2, d3 universal constants (Braaten and Hammer, 2006)

Efimov Theory: atom dimer effective range

ka cot δAD = c1(ka) + c2(ka) cot[s0 ln(κ∗a) + φ(ka)]
with c1, c2, φ universal functions
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Universal Effective Range Function
ka cot δAD = c1(ka) + c2(ka) cot[s0 ln(κ′

∗
a) + φ(ka)]
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Zero-Range vs. Finite-Range (three-body system)

zero-range finite-range

E3/(~
2/ma2) = E3/E2 = tan2 ξ E3/(~

2/ma2
B) = E3/E2 = tan2 ξ

κ∗a = 1
cos ξ e−∆(ξ)/2s0 κ∗aB = 1

cos ξ e−∆̃(ξ)/2s0

M. G. and A. K., PRA 90, 012502 (2014)

1
cos ξ e−∆(ξ)/2s0 = 1

cos ξ e−∆̃(ξ)/2s0 + Γ

or

2s0Γ = tan φ̃ − tan φ

with tan φ, tan φ̃ the derivatives of ∆(ξ), ∆̃(ξ) at ξ = −π/2

A. Kievsky (INFN-Pisa) Efimov physics in few-nucleon systems CD2015, June 2015 5 / 20



Zero-Range vs. Finite-Range (three-body system)

zero-range finite-range

E3/(~
2/ma2) = E3/E2 = tan2 ξ E3/(~

2/ma2
B) = E3/E2 = tan2 ξ

κ∗a = 1
cos ξ e−∆(ξ)/2s0 κ∗aB = 1

cos ξ e−∆̃(ξ)/2s0

M. G. and A. K., PRA 90, 012502 (2014)

1
cos ξ e−∆(ξ)/2s0 = 1

cos ξ e−∆̃(ξ)/2s0 + Γ

or

2s0Γ = tan φ̃ − tan φ

with tan φ, tan φ̃ the derivatives of ∆(ξ), ∆̃(ξ) at ξ = −π/2

A. Kievsky (INFN-Pisa) Efimov physics in few-nucleon systems CD2015, June 2015 5 / 20



-1 -0.9 -0.8 -0.7 -0.6 -0.5
ξ/π

-2

-1

0

1

2
∆

(ξ
)

zero-range
gaussian
yukawian
LM2M2

2s
0
Γ=tanφ

fr
-tanφ

zr
  ~ 2s

0
0.8

A. Kievsky (INFN-Pisa) Efimov physics in few-nucleon systems CD2015, June 2015 6 / 20



Zero-Range vs. Finite-Range (three-body system)
zero-range finite-range

K3a = K3/K2 = tan ξ K3aB = K3/K2 = tan ξ

κ∗a = 1
cos ξ e−∆(ξ)/2s0 κ∗aB = 1

cos ξ e−∆̃(ξ)/2s0

1
cos ξ e−∆(ξ)/2s0 = 1

cos ξ e−∆̃(ξ)/2s0 + Γ

or

κ∗(a − aB) = Γ

a − aB =
Γ

κ∗

= r∗ ≈ constant (at equal values of ξ)

Varying the depth of a potential around the unitary limit, the results can
be reproduced by a two-parameter potential (as a gaussian) which
produces an equivalent universal function,∆̃(ξ), rotated with respect to
the universal zero-range function ∆(ξ).
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How constant is Γ?

κ∗aB(1 + Γ
κ∗aB

) = 1
cos ξ e−∆(ξ)/2s0 = y(ξ)

1 + r∗
aB

= y(ξ)/κ∗aB
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1/2-spin 1/2-isospin fermions close to the unitary limit
The 2N system in s-wave
This is a two-channel system with spin S = 0 and S = 1. For two
nucleons the physical values are:
Ed = −2.2245 MeV, aB = 4.318 fm
a1 = 5.424 ± 0.003 fm reff

1 = 1.760 ± 0.005 fm
a0 = −23.740 ± 0.020 fm reff

0 = 2.77 ± 0.05 fm

moving the system to the unitary limit
The S = 1 channel:

a gaussian V1e−r2/r2
1 with V0 and r1 fixed to describe a1 and aB

V1 is varied: this path has the value rB = a1 − aB almost constant.
For nuclear physics we have rB ≈ 1.2 fm

The S = 0 channel:

a gaussian V0e−r2/r2
1 is used with V0 fixed to describe a1/a0

constant
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Three-body spectrum with spin-isospin symmetry
zero-range finite-range

K3a = K3/K2 = tan ξ K3aB = K3/K2 = tan ξ

κ∗a = 1
cos ξ e−∆(ξ)/2s0 κ∗aB = 1

cos ξ e−∆̃(ξ)/2s0

1
cos ξ e−∆(ξ)/2s0 = 1

cos ξ e−∆̃(ξ)/2s0 − Γ

then the spectrum results

K3a = K3/K2 = tan ξ
κ∗aB + Γ = 1

cos ξ e−∆(ξ)/2s0 = y(ξ)

with
Γ = Γ(a0/a1)

determining Γ

for three bosons Γ(1) ≈ 0.8
in the nuclear plane Γ(a0/a1 = −4.3) ≈ −0.2
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Comments on the two-channel plot

Studying a three-boson system using finite-range potentials, the
first excited state does not dispapear onto the two-body threshold

In the two-channel system the excited state disappears on the
two-body threshold as the ratio a0/a1 varies.

The analysis of the nuclear plane produces a binding energy at
the unitary limit of Eu ≈ 3.6 MeV.

However at the nuclear point the binding energy of E3 ≈ 10.2 MeV
is far from the experimental value of 8.5 MeV

A three-body force has to be included

using a more realistic potential model and varying the depth, the
unitary limit can be reached.

The value obtained has been Eu ≈ 2.8 MeV.
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Working on the nuclear point
The 2N sector
Low Energy data:
Ed = −2.2245 MeV
a1 = 5.424 ± 0.003 fm reff

1 = 1.760 ± 0.005 fm
a0 = −23.740 ± 0.020 fm reff

0 = 2.77 ± 0.05 fm

Constructing LO 2N potential
Two parameters corresponding to the l = 0 partial waves with S = 0, 1:
V0(r) = −V0e−r2/r2

0 , V1(r) = −V1e−r2/r2
1

V0[MeV] r0[fm] a0[fm] reff
0 [fm] V1[MeV] r1[fm] a1[fm] reff

1 [fm]
53.255 1.40 −23.741 2.094 79.600 1.40 5.309 1.622
42.028 1.57 −23.745 2.360 65.750 1.57 5.423 1.776
40.413 1.60 −23.745 2.407 63.712 1.60 5.447 1.802
37.900 1.65 −23.601 2.487 60.575 1.65 5.482 1.846
33.559 1.75 −23.745 2.644 55.036 1.75 5.548 1.930
30.932 1.82 −23.746 2.756
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Working on the nuclear point
The 3N sector

V0[MeV] r0[fm] V1[MeV] r1[fm] E0
3 [MeV] E1

3 [MeV] 2and [fm]
53.255 1.40 79.600 1.40 −12.40 −2.191 −2.175
42.028 1.57 65.750 1.57 −10.83 −2.199 −1.236
40.413 1.60 63.712 1.60 −10.59 −2.197 −1.097
37.900 1.65 60.575 1.65 −10.22 −2.199 −0.860
33.559 1.75 55.036 1.75 −9.584 −2.201
30.932 1.82 65.750 1.57 −9.715 −0.285
Exp. −8.482 0.645 ± 0.010

Introducing a Three-Body Force
We choose a simple (two-parameter) form:

W (ρ) = W0e−ρ2/ρ2
0

with ρ2 = 2
3(r2

12 + r2
23 + r2

31)

W0 and ρ0 fixed to describe E(3H) and 2and
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Summary of the LO potential
LO Ed B(3H) B(3He) B(3He∗) 2and

-2.225 -8.480 -28.41 -8.29 0.652
Exp. -2.225 -8.482 -28.296 -8.10 0.645
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A=3 low energy scattering

No bad for a 4-parameter 2N potential + 2-parameter 3N potential!
next step (in progress)→ 6He and 6Li ground states
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Conclusions

A path matching a physical point to the unitary limit has been
analyzed

Varying the depth of the potential the quantity rB = a − aB remains
almost constant

Along this path different scale can be joined

Finite-range effects have been analyzed

Using this procedure a 1/2-spin 1/2-isospin fermion system has
been studied

A detailed study on the nuclear physics point has been performed
with gaussian potentials

Including a three-body force the doublet n − d scattering length
and the four-nucleon system have been studied

Work in progress: extension to A > 4
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