Applying Efimov physics to few-nucleon systems

A. Kievsky
INFN, Sezione di Pisa (Italy)

The 8th International Workshop on Chiral Dynamics
Pisa 29 June-3 July 2015

In collaboration with M. Gattobigio (INLN)

Applying Efimov physics to few-nucleon systems

A. Kievsky
INFN, Sezione di Pisa (Italy)

The 8th International Workshop on Chiral Dynamics Pisa 29 June-3 July 2015

In collaboration with M. Gattobigio (INLN)

Preliminaries: low energy $n-d$ scattering

Effective range formula

$$
\begin{gathered}
k \cot \delta_{n d}=\frac{-\frac{1}{a_{n d}}+\frac{1}{2} r_{s} k^{2}}{1+k^{2} / k_{0}^{2}} \\
E_{p}=\frac{3}{4}\left(\hbar^{2} / m\right) k_{0}^{2} \\
a_{n d} \approx 0.7 \mathrm{fm} \\
E_{p} \approx 160 \mathrm{keV} \\
r_{s} \approx-127 \mathrm{fm}
\end{gathered}
$$

C.R. Chen et al., PRC39, 1261 (1989)

Preliminaries: low energy $n-d$ scattering

Effective range formula

$$
\begin{aligned}
& k \cot \delta_{n d}=\frac{-\frac{1}{a_{n d}}+\frac{1}{2} r_{s} k^{2}}{1+k^{2} / k_{0}^{2}} \\
& E_{p}=\frac{3}{4}\left(\hbar^{2} / m\right) k_{0}^{2} \\
& a_{n d} \approx 0.7 \mathrm{fm} \\
& E_{p} \approx 160 \mathrm{keV} \\
& r_{s} \approx-127 \mathrm{fm} \\
& \text { C.R. Chen et al., PRC39, } 1261 \text { (1989) }
\end{aligned}
$$

Why there is a curvature in the effective range function?

Universality in atom-dimer scattering

Efimov Theory: Zero-Range Theory for three bosons

$$
\begin{gathered}
E_{3}^{n} /\left(\hbar^{2} / m a^{2}\right)=\tan ^{2} \xi \\
\kappa_{*} a=\mathrm{e}^{\pi\left(n-n_{*}\right) / s_{0}} \mathrm{e}^{-\Delta(\xi) / 2 s_{0}} / \cos \xi
\end{gathered}
$$

- a is the two-body scattering length
- κ_{*} is the three-body parameter
- $\Delta(\xi)$ is an universal function

Efimov Theory: atom-dimer scattering length
$a_{A D}=a\left(d_{1}+d_{2} \tan \left[s_{0} \ln \left(\kappa_{*} a\right)+d_{3}\right]\right)$ (Efimov 1979)
with d_{1}, d_{2}, d_{3} universal constants (Braaten and Hammer, 2006)
Efimov Theory: atom dimer effective range $k a \cot \delta_{A D}=c_{1}(k a)+c_{2}(k a) \cot \left[s_{0} \ln \left(\kappa_{*} a\right)+\phi(k a)\right]$ with c_{1}, c_{2}, ϕ universal functions

Universal Effective Range Function

$k a \cot \delta_{A D}=c_{1}(k a)+c_{2}(k a) \cot \left[s_{0} \ln \left(\kappa_{*}^{\prime} a\right)+\phi(k a)\right]$

Zero-Range vs. Finite-Range (three-body system)

$$
\begin{array}{l|l}
\text { zero-range } & \text { finite-range } \\
E_{3} /\left(\hbar^{2} / m a^{2}\right)=E_{3} / E_{2}=\tan ^{2} \xi & E_{3} /\left(\hbar^{2} / m a_{B}^{2}\right)=E_{3} / E_{2}=\tan ^{2} \xi \\
\kappa_{*} a=\frac{1}{\cos \xi} \mathrm{e}^{-\Delta(\xi) / 2 s_{0}} & \kappa_{*} a_{B}=\frac{1}{\cos \xi} \mathrm{e}^{-\tilde{\Delta}(\xi) / 2 s_{0}} \\
\hline
\end{array}
$$

Zero-Range vs. Finite-Range (three-body system)

zero-range

$\left.\begin{aligned} & E_{3} /\left(\hbar^{2} / m a^{2}\right)=E_{3} / E_{2}=\tan ^{2} \xi \\ & \kappa_{*} a=\frac{1}{\cos \xi} \mathrm{e}^{-\Delta(\xi) / 2 s_{0}}\end{aligned} \right\rvert\,$
M. G. and A. K., PRA 90, 012502 (2014)
$\frac{1}{\cos \xi} \mathrm{e}^{-\Delta(\xi) / 2 s_{0}}=\frac{1}{\cos \xi} \mathrm{e}^{-\tilde{\Delta}(\xi) / 2 s_{0}}+\Gamma$
or
$2 s_{0} \Gamma=\tan \tilde{\phi}-\tan \phi$
with $\tan \phi, \tan \tilde{\phi}$ the derivatives of $\Delta(\xi), \tilde{\Delta}(\xi)$ at $\xi=-\pi / 2$

Zero-Range vs. Finite-Range (three-body system)

zero-range	finite-range
$K_{3} a=K_{3} / K_{2}=\tan \xi$	$K_{3} a_{B}=K_{3} / K_{2}=\tan \xi$
$\kappa_{*} a=\frac{1}{\cos \xi} \mathrm{e}^{-\Delta(\xi) / 2 s_{0}}$	$\kappa_{*} a_{B}=\frac{1}{\cos \xi} \mathrm{e}^{-\tilde{\Delta}(\xi) / 2 s_{0}}$

$\frac{1}{\cos \xi} \mathrm{e}^{-\Delta(\xi) / 2 s_{0}}=\frac{1}{\cos \xi} \mathrm{E}^{-\tilde{\Delta}(\xi) / 2 s_{0}}+\Gamma$
or
$\kappa_{*}\left(a-a_{B}\right)=\Gamma$
$a-a_{B}=\frac{\Gamma}{\kappa_{*}}=r_{*} \approx$ constant (at equal values of ξ)

Varying the depth of a potential around the unitary limit, the results can be reproduced by a two-parameter potential (as a gaussian) which produces an equivalent universal function, $\tilde{\Delta}(\xi)$, rotated with respect to the universal zero-range function $\Delta(\xi)$.

How constant is Γ ?

$$
\begin{aligned}
& \kappa_{*} a_{B}\left(1+\frac{\Gamma}{\kappa_{*}}\right)=\frac{1}{\cos \xi} \mathrm{e}^{-\Delta(\xi) / 2 s_{0}}=y(\xi) \\
& 1+\frac{r \kappa_{*}}{a_{B}}=y(\xi) / \kappa_{*} a_{B}
\end{aligned}
$$

1/2-spin 1/2-isospin fermions close to the unitary limit
The $2 N$ system in s-wave
This is a two-channel system with spin $S=0$ and $S=1$. For two nucleons the physical values are:
$E_{d}=-2.2245 \mathrm{MeV}, a_{B}=4.318 \mathrm{fm}$
$\begin{array}{ll}a_{1}=5.424 \pm 0.003 \mathrm{fm} & r_{1}^{\text {eff }}=1.760 \pm 0.005 \mathrm{fm} \\ a_{0}=-23.740 \pm 0.020 \mathrm{fm} & r_{0}^{\text {eff }}=2.77 \pm 0.05 \mathrm{fm}\end{array}$

- The $S=1$ channel
a gaussian $1 / 1 e^{-r^{2} / r_{1}^{2}}$ with V_{0} and r_{1} fixed to describe a_{1} and a_{B}
V_{1} is varied: this path has the value r_{E}
For nuclear physics we have
- The $S=0$ channel:
a gaussian $V_{0} \mathrm{e}^{-r^{2} / r_{1}^{2}}$ is used with V_{0} fixed to describe a_{1} / a_{0} constant

$1 / 2$-spin $1 / 2$-isospin fermions close to the unitary limit

The $2 N$ system in s-wave
This is a two-channel system with spin $S=0$ and $S=1$. For two nucleons the physical values are:
$E_{d}=-2.2245 \mathrm{MeV}, a_{B}=4.318 \mathrm{fm}$
$a_{1}=5.424 \pm 0.003 \mathrm{fm} \quad r_{1}^{\text {eff }}=1.760 \pm 0.005 \mathrm{fm}$
$a_{0}=-23.740 \pm 0.020 \mathrm{fm} \quad r_{0}^{\text {eff }}=2.77 \pm 0.05 \mathrm{fm}$

moving the system to the unitary limit

- The $S=1$ channel:
a gaussian $V_{1} \mathrm{e}^{-r^{2} / r_{1}^{2}}$ with V_{0} and r_{1} fixed to describe a_{1} and a_{B} V_{1} is varied: this path has the value $r_{B}=a_{1}-a_{B}$ almost constant. For nuclear physics we have $r_{B} \approx 1.2 \mathrm{fm}$

1/2-spin 1/2-isospin fermions close to the unitary limit

The $2 N$ system in s-wave
This is a two-channel system with spin $S=0$ and $S=1$. For two nucleons the physical values are:
$E_{d}=-2.2245 \mathrm{MeV}, a_{B}=4.318 \mathrm{fm}$
$a_{1}=5.424 \pm 0.003 \mathrm{fm} \quad r_{1}^{\text {eff }}=1.760 \pm 0.005 \mathrm{fm}$
$a_{0}=-23.740 \pm 0.020 \mathrm{fm} \quad r_{0}^{\text {eff }}=2.77 \pm 0.05 \mathrm{fm}$

moving the system to the unitary limit

- The $S=1$ channel:
a gaussian $V_{1} \mathrm{e}^{-r^{2} / r_{1}^{2}}$ with V_{0} and r_{1} fixed to describe a_{1} and a_{B} V_{1} is varied: this path has the value $r_{B}=a_{1}-a_{B}$ almost constant. For nuclear physics we have $r_{B} \approx 1.2 \mathrm{fm}$
- The $S=0$ channel:
a gaussian $V_{0} \mathrm{e}^{-r^{2} / r_{1}^{2}}$ is used with V_{0} fixed to describe a_{1} / a_{0} constant

Three-body spectrum with spin-isospin symmetry

zero-range

finite-range

$$
\begin{array}{l|l}
K_{3} a=K_{3} / K_{2}=\tan \xi & K_{3} a_{B}=K_{3} / K_{2}=\tan \xi \\
\kappa_{*} a=\frac{1}{\cos \xi} \mathrm{e}^{-\Delta(\xi) / 2 s_{0}} & \kappa_{*} a_{B}=\frac{1}{\cos \xi} \mathrm{e}^{-\tilde{\Delta}(\xi) / 2 s_{0}}
\end{array}
$$

$\frac{1}{\cos \xi} \mathrm{e}^{-\Delta(\xi) / 2 s_{0}}=\frac{1}{\cos \xi} \mathrm{e}^{-\tilde{\Delta}(\xi) / 2 s_{0}}-\Gamma$
then the spectrum results
$K_{3} a=K_{3} / K_{2}=\tan \xi$
$\kappa_{*} a_{B}+\Gamma=\frac{1}{\cos \xi} \mathrm{e}^{-\Delta(\xi) / 2 s_{0}}=y(\xi)$
with
$\Gamma=\Gamma\left(a_{0} / a_{1}\right)$

determining Γ

for three bosons $\Gamma(1) \approx 0.8$
in the nuclear plane $\Gamma\left(a_{0} / a_{1}=-4.3\right) \approx-0.2$

Comments on the two-channel plot

- Studying a three-boson system using finite-range potentials, the first excited state does not dispapear onto the two-body threshold
- In the two-channel system the excited state disappears on the two-body threshold as the ratio a_{0} / a_{1} varies.
- The analysis of the nuclear plane produces a binding energy at the unitary limit of $E_{u} \approx 3.6 \mathrm{MeV}$.
- However at the nuclear point the binding energy of $E_{3} \approx 10.2 \mathrm{MeV}$ is far from the experimental value of 8.5 MeV
- A three-body force has to be included
- using a more realistic potential model and varying the depth, the unitary limit can be reached.
- The value obtained has been $E_{u} \approx 2.8 \mathrm{MeV}$.

Working on the nuclear point

The 2 N sector
Low Energy data:
$E_{d}=-2.2245 \mathrm{MeV}$
$a_{1}=5.424 \pm 0.003 \mathrm{fm} \quad r_{1}^{\text {eff }}=1.760 \pm 0.005 \mathrm{fm}$
$a_{0}=-23.740 \pm 0.020 \mathrm{fm} \quad r_{0}^{\text {eff }}=2.77 \pm 0.05 \mathrm{fm}$
Constructing LO 2 N potential
Two parameters corresponding to the $I=0$ partial waves with $S=0,1$: $V_{0}(r)=-V_{0} \mathrm{e}^{-r^{2} / r_{0}^{2}}, V_{1}(r)=-V_{1} \mathrm{e}^{-r^{2} / r_{1}^{2}}$

$\mathrm{V}_{0}[\mathrm{MeV}]$	$r_{0}[\mathrm{fm}]$	$a_{0}[\mathrm{fm}]$	$r_{0}^{\text {eff }}[\mathrm{fm}]$	$V_{1}[\mathrm{MeV}$	$r_{1}[f m]$	n]	,
53.255	1.40	-23.741	2.094	79.600	1.40	5.309	1.622
42.028	1.57	-23.745	2.360	65.750	1.57	5.423	1.776
40.413	1.60	-23.745	2.407	63.712	1.60	5.447	1.802
37.900	1.65	-23.601	2.487	60.575	1.65	5.482	1.846
33.559	1.75	-23.745	2.644	55.036	1.75	5.548	1.930
30.932	1.82	-23.7	2.75				

Working on the nuclear point

The 3 N sector

$V_{0}[\mathrm{MeV}]$	$r_{0}[\mathrm{fm}]$	$V_{1}[\mathrm{MeV}]$	$r_{1}[\mathrm{fm}]$	$E_{3}^{0}[\mathrm{MeV}]$	$E_{3}^{1}[\mathrm{MeV}]$	${ }^{2} a_{n d}[\mathrm{fm}]$
53.255	1.40	79.600	1.40	-12.40	-2.191	-2.175
42.028	1.57	65.750	1.57	-10.83	-2.199	-1.236
40.413	1.60	63.712	1.60	-10.59	-2.197	-1.097
37.900	1.65	60.575	1.65	-10.22	-2.199	-0.860
33.559	1.75	55.036	1.75	-9.584	-2.201	
30.932	1.82	65.750	1.57	-9.715		-0.285
Exp.				-8.482		0.645 ± 0.010

We choose a simple (two-parameter) form:

Working on the nuclear point

The 3 N sector

$V_{0}[\mathrm{MeV}]$	$r_{0}[f \mathrm{fm}]$	$V_{1}[\mathrm{MeV}]$	$r_{1}[f \mathrm{fm}]$	$E_{3}^{0}[\mathrm{MeV}]$	$E_{3}^{1}[\mathrm{MeV}]$	${ }^{2} a_{n d}[f \mathrm{fm}]$
53.255	1.40	79.600	1.40	-12.40	-2.191	-2.175
42.028	1.57	65.750	1.57	-10.83	-2.199	-1.236
40.413	1.60	63.712	1.60	-10.59	-2.197	-1.097
37.900	1.65	60.575	1.65	-10.22	-2.199	-0.860
33.559	1.75	55.036	1.75	-9.584	-2.201	
30.932	1.82	65.750	1.57	-9.715		-0.285
Exp.				-8.482		0.645 ± 0.010

Introducing a Three-Body Force

We choose a simple (two-parameter) form:

$$
W(\rho)=W_{0} \mathrm{e}^{-\rho^{2} / \rho_{0}^{2}}
$$

with $\rho^{2}=\frac{2}{3}\left(r_{12}^{2}+r_{23}^{2}+r_{31}^{2}\right)$
W_{0} and ρ_{0} fixed to describe $E\left({ }^{3} \mathrm{H}\right)$ and ${ }^{2} a_{\text {nd }}$
$\mathrm{V}(\mathrm{r})=[\mathrm{V}(\mathrm{S}=1)+\mathrm{V}(\mathrm{S}=0)]^{*} \exp \left(-\mathrm{r}^{2} / \mathrm{r}_{1}^{2}\right)+\mathrm{W}_{0} * \exp \left(-\rho^{2} / \rho_{0}^{2}\right)$

The $\mathrm{N}=4$ ground and excited state

Summary of the LO potential

LO	E_{d}	$B\left({ }^{3} \mathrm{H}\right)$	$B\left({ }^{3} \mathrm{He}\right)$	$B\left({ }^{3} \mathrm{He}{ }^{*}\right)$	${ }^{2} a_{n d}$
	-2.225	-8.480	-28.41	-8.29	0.652
Exp.	-2.225	-8.482	-28.296	-8.10	0.645

$\mathrm{A}=3$ low energy scattering

No bad for a 4-parameter $2 N$ potential + 2-parameter $3 N$ potential! next step (in progress) $\rightarrow{ }^{6} \mathrm{He}$ and ${ }^{6} \mathrm{Li}$ ground states

Conclusions

- A path matching a physical point to the unitary limit has been analyzed
- Varying the depth of the potential the quantity $r_{B}=a-a_{B}$ remains almost constant
- Along this path different scale can be joined
- Finite-range effects have been analyzed
- Using this procedure a 1/2-spin 1/2-isospin fermion system has been studied
- A detailed study on the nuclear physics point has been performed with gaussian potentials
- Including a three-body force the doublet $n-d$ scattering length and the four-nucleon system have been studied

Conclusions

- A path matching a physical point to the unitary limit has been analyzed
- Varying the depth of the potential the quantity $r_{B}=a-a_{B}$ remains almost constant
- Along this path different scale can be joined
- Finite-range effects have been analyzed
- Using this procedure a 1/2-spin 1/2-isospin fermion system has been studied
- A detailed study on the nuclear physics point has been performed with gaussian potentials
- Including a three-body force the doublet $n-d$ scattering length and the four-nucleon system have been studied
- Work in progress: extension to $A>4$

