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Motivation

• GW detection will be pretty good, but

• The detection and characterisation of a 
population of GW sources will allow

• the study of the large-scale structure of the Universe.

• us to infer the formation history of the massive black hole 
population.

• precision mapping of the expansion history of the Universe.

• the use of cosmic distance markers (standard sirens).

• provide a “powerful” probe of the dark energy content of the 
universe.
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Distance ladder

Copyright © Addison Wesley

• Hierarchical distance calibration

• Nearby objects are used to calibrate 
more distant measurements

• GW measurements would be 
independent of this ladder
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Distance measures

Figure 3: The dimensionless luminosity distance DL/DH. The three curves are for the three
world models, (ΩM, ΩΛ) = (1, 0), solid; (0.05, 0), dotted; and (0.2, 0.8), dashed.
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• The redshift

• Luminosity distance

“The distance to an object of luminosity L 
with measured flux S”

• DL and z are related in a 
complicated way.

• Governed by the parameters

where DM1 and DM2 are the transverse comoving distances to z1 and z2, DH is the Hubble dis-
tance, and Ωk is the curvature density parameter (Peebles, 1993, pp 336–337). Unfortunately,
the above formula is not correct for Ωk < 0 (Phillip Helbig, 1998, private communication).

7 Luminosity distance

The luminosity distance DL is defined by the relationship between bolometric (ie, integrated
over all frequencies) flux S and bolometric luminosity L:

DL ≡
√

L

4π S
(20)

It turns out that this is related to the transverse comoving distance and angular diameter
distance by

DL = (1 + z) DM = (1 + z)2 DA (21)

(Weinberg, 1972, pp 420–424; Weedman, 1986, pp 60–62). The latter relation follows from
the fact that the surface brightness of a receding object is reduced by a factor (1+ z)−4, and
the angular area goes down as D−2

A . The luminosity distance is plotted in Figure 3.
If the concern is not with bolometric quantities but rather with differential flux Sν and

luminosity Lν , as is usually the case in astronomy, then a correction, the k-correction, must
be applied to the flux or luminosity because the redshifted object is emitting flux in a different
band than that in which you are observing. The k-correction depends on the spectrum of
the object in question, and is unnecessary only if the object has spectrum ν Lν = constant.
For any other spectrum the differential flux Sν is related to the differential luminosity Lν by

Sν = (1 + z)
L(1+z)ν

Lν

Lν

4π D2
L

(22)

where z is the redshift, the ratio of luminosities equalizes the difference in flux between the
observed and emitted bands, and the factor of (1 + z) accounts for the redshifting of the
bandwidth. Similarly, for differential flux per unit wavelength,

Sλ =
1

(1 + z)

Lλ/(1+z)

Lλ

Lλ

4π D2
L

(23)

(Peebles, 1993, pp 330–331; Weedman, 1986, pp 60–62). In this author’s opinion, the most
natural flux unit is differential flux per unit log frequency or log wavelength ν Sν = λ Sλ for
which there is no redshifting of the bandpass so

ν Sν =
νe Lνe

4π D2
L

(24)

where νe = (1 + z)ν is the emitted frequency. These equations are straightforward to
generalize to bandpasses of finite width.

The apparent magnitude m of an astronomical source in a photometric bandpass is defined
to be the ratio of the apparent flux of that source to the apparent flux of the bright star
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where νo and λo are the observed frequency and wavelength, and νe and λe are the emitted.
In special relativity, redshift is related to radial velocity v by

1 + z =

√

√

√

√

1 + v/c

1 − v/c
(9)

where c is the speed of light. In general relativity, (9) is true in one particular coordinate
system, but not any of the traditionally used coordinate systems. Many feel (partly for this
reason) that it is wrong to view relativistic redshifts as being due to radial velocities at all
(eg, Harrison, 1993). I do not agree. On the other hand, redshift is directly observable and
radial velocity is not; these notes concentrate on observables.

The difference between an object’s measured redshift zobs and its cosmological redshift
zcos is due to its (radial) peculiar velocity vpec; ie, we define the cosmological redshift as that
part of the redshift due solely to the expansion of the Universe, or Hubble flow. The peculiar
velocity is related to the redshift difference by

vpec = c
(zobs − zcos)

(1 + z)
(10)

where I have assumed vpec " c. This can be derived from (9) by taking the derivative
and using the special relativity formula for addition of velocities. From here on, we assume
z = zcos.

For small v/c, or small distance d, in the expanding Universe, the velocity is linearly
proportional to the distance (and all the distance measures, eg, angular diameter distance,
luminosity distance, etc, converge)

z ≈
v

c
=

d

DH
(11)

where DH is the Hubble distance defined in (4). But this is only true for small redshifts! It
is important to note that many galaxy redshift surveys, when presenting redshifts as radial
velocities, always use the non-relativistic approximation v = c z, even when it may not be
physically appropriate (eg, Fairall 1992).

In terms of cosmography, the cosmological redshift is directly related to the scale factor
a(t), or the “size” of the Universe. For an object at redshift z

1 + z =
a(to)

a(te)
(12)

where a(to) is the size of the Universe at the time the light from the object is observed, and
a(te) is the size at the time it was emitted.

Redshift is almost always determined with respect to us (or the frame centered on us
but stationary with respect to the microwave background), but it is possible to define the
redshift z12 between objects 1 and 2, both of which are cosmologically redshifted relative to
us: the redshift z12 of an object at redshift z2 relative to a hypothetical observer at redshift
z1 < z2 is given by

1 + z12 =
a(t1)

a(t2)
=

1 + z2

1 + z1
(13)

3

�� = (H0, �m, �k, w(t))
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DL-z relation

• One of our best 
observational probes 
of the cosmological 
parameters is the 
DL-z relation, which 
maps the expansion 
history of the 
universe.

Kowalski et al 2008

Vega, through that bandpass (don’t ask me about “AB magnitudes”). The distance modulus
DM is defined by

DM ≡ 5 log

(

DL

10 pc

)

(25)

because it is the magnitude difference between an object’s observed bolometric flux and
what it would be if it were at 10 pc (this was once thought to be the distance to Vega).
The distance modulus is plotted in Figure 4. The absolute magnitude M is the astronomer’s
measure of luminosity, defined to be the apparent magnitude the object in question would
have if it were at 10 pc, so

m = M + DM + K (26)

where K is the k-correction

K = −2.5 log

[

(1 + z)
L(1+z)ν

Lν

]

= −2.5 log

[

1

(1 + z)

Lλ/(1+z)

Lλ

]

(27)

(eg, Oke & Sandage, 1968).

8 Parallax distance

If it were possible to measure parallaxes for high redshift objects, the distance so measured
would be the parallax distance DP (Weinberg, 1972, pp 418–420). It may be possible, one
day, to measure parallaxes to distant galaxies using gravitational lensing, although in these
cases, a modified parallax distance is used which takes into account the redshifts of both the
source and the lens (Schneider, Ehlers & Falco, 1992, pp 508–509), a discussion of which is
beyond the scope of these notes.

9 Comoving volume

The comoving volume VC is the volume measure in which number densities of non-evolving
objects locked into Hubble flow are constant with redshift. It is the proper volume times
three factors of the relative scale factor now to then, or (1 + z)3. Since the derivative of
comoving distance with redshift is 1/E(z) defined in (14), the angular diameter distance
converts a solid angle dΩ into a proper area, and two factors of (1+ z) convert a proper area
into a comoving area, the comoving volume element in solid angle dΩ and redshift interval
dz is

dVC = DH
(1 + z)2 D2

A

E(z)
dΩ dz (28)

where DA is the angular diameter distance at redshift z and E(z) is defined in (14) (Weinberg,
1972, p. 486; Peebles, 1993, pp 331–333). The comoving volume element is plotted in
Figure 5. The integral of the comoving volume element from the present to redshift z gives

7

di
st

an
ce

 m
od

ul
us

Thursday, 23 May 13



Current knowledge
• The recently 

published Planck 
CMB results 
(combined with 
others) give the best 
constraints to date.

• Consistent with the 
standard ⋀CDM 
model.

• These (EM) results 
are likely to improve 
before GWs are 
competitive. 

Planck Collaboration 2013

Planck Collaboration: Cosmological parameters
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Fig. 36. 2D marginalized posterior distributions for w0 and
wa, for the data combinations Planck+WP+BAO (grey),
Planck+WP+Union2.1 (red) and Planck+WP+SNLS (blue).
The contours are 68% and 95%, and dashed grey lines show the
cosmological constant solution.

energy abundance (for a flat Universe). Note that the model of
Eq. (95) has dark energy present over a large range of redshifts;
the bounds on ⌦e can be substantially weaker if dark energy is
only present over a limited range of redshifts (Pettorino et al.
2013). The presence or absence of dark energy at the epoch of
last scattering is the dominant e↵ect on the CMB anisotropies
and hence the constraints are insensitive to the addition of low
redshift supplementary data such as BAO.

The most precise bounds on EDE arise from the analysis
of CMB anisotropies (Doran et al. 2001; Caldwell et al. 2003;
Calabrese et al. 2011; Reichardt et al. 2012; Sievers et al.
2013; Hou et al. 2012; Pettorino et al. 2013). Using
Planck+WP+highL, we find

⌦e < 0.009 (95%; Planck+WP+highL). (96)

(The limit for Planck+WP is very similar: ⌦e < 0.010.) These
bounds are consistent with and improve the recent ones of
Hou et al. (2012), who give ⌦e < 0.013 at 95% CL, and
Sievers et al. (2013), who find ⌦e < 0.025 at 95% CL.

In summary, the results on dynamical dark energy (except for
those on early dark energy discussed above) are dependent on
exactly what supplementary data are used in conjunction with
the CMB data. (Planck lensing does not significantly improve
the constraints on the models discussed here.) Using the direct
measurement of H0, or the SNLS SNe sample, together with
Planck we see preferences for dynamical dark energy at about
the 2� level reflecting the tensions between these data sets and
Planck in the⇤CDM model. In contrast, the BAO measurements
together with Planck give tight constraints which are consistent
with a cosmological constant. Our inclination is to give greater
weight to the BAO measurements and to conclude that there is
no strong evidence that the dark energy is anything other than a
cosmological constant.

6.6. Dark matter annihilation

Energy injection from dark matter (DM) annihilation can
change the recombination history and a↵ect the shape of
the angular CMB spectra (Chen & Kamionkowski 2004;

Padmanabhan & Finkbeiner 2005; Zhang et al. 2006;
Mapelli et al. 2006). As recently shown in several papers
(see e.g., Galli et al. 2009, 2011; Giesen et al. 2012; Hutsi et al.
2011; Natarajan 2012) CMB anisotropies o↵er an opportunity
to constrain DM annihilation models.

High-energy particles injected in the high-redshift thermal
gas by DM annihilation are typically cooled down to the keV
scale by high energy processes; once the shower has reached
this energy scale, the secondary particles produced can ion-
ize, excite or heat the thermal gas (Shull & van Steenberg 1985;
Valdes et al. 2010); the first two processes modify the evolution
of the free electron fraction xe, while the third a↵ects the tem-
perature of the baryons.

The rate of energy release, dE/dt, per unit volume by a relic
annihilating DM particle is given by

dE
dt

(z) = 2 g ⇢2
cc2⌦2

c(1 + z)6 pann(z), (97)

where pann is, in principle, a function of redshift z, defined as

pann(z) ⌘ f (z)
h�vi
m�
, (98)

where h�vi is the thermally averaged annihilation cross-section,
m� is the mass of the DM particle, ⇢c is the critical density of
the Universe today, g is a degeneracy factor equal to 1/2 for
Majorana particles and 1/4 for Dirac particles (in the following,
constraints will refer to Majorana particles), and the parameter
f (z) indicates the fraction of energy which is absorbed overall
by the gas at redshift z. We note that the presence of the brackets
in h�vi denote a thermal average over the velocity distribution
of particles.

In Eq. (98), the factor f (z) depends on the details of the
annihilation process, such as the mass of the DM particle and
the annihilation channel (see e.g., Slatyer et al. 2009). The func-
tional shape of f (z) can be taken into account using gen-
eralized parameterizations (Finkbeiner et al. 2012; Hutsi et al.
2011). However, as shown in Galli et al. (2011), Giesen et al.
(2012), and Finkbeiner et al. (2012) it is possible to neglect the
redshift dependence of f (z) to first approximation, since current
data shows very little sensitivity to variations of this function.
The e↵ects of DM annihilation can therefore be well parameter-
ized by a single constant parameter, pann, that encodes the de-
pendence on the properties of the DM particles.

We compute here the theoretical angular power in the pres-
ence of DM annihilations, by modifying the RECFAST routine
in the camb code as in Galli et al. (2011) and by making use
of the package CosmoMC for Monte Carlo parameter estimation.
We checked that we obtain the same results by using the CLASS
Boltzmann code (Lesgourgues 2011a) and the Monte Python
package (Audren et al. 2012), with DM annihilation e↵ects cal-
culated either by RECFAST or HyRec (Ali-Haimoud & Hirata
2011), as detailed in Giesen et al. (2012). Besides pann, we sam-
ple the parameters of the base ⇤CDM model and the fore-
ground/nuisance parameters described in Sect. 4.

From Planck+WP we find

pann < 5.4 ⇥ 10�6 m3 s�1 kg�1 (95; Planck+WP). (99)

This constraint is weaker than that found from the full
WMAP9 temperature and polarization likelihood, pann < 1.2 ⇥
10�6 m3s�1kg�1 because the Planck likelihood does not yet in-
clude polarization information at intermediate and high multi-
poles. In fact, the damping e↵ect of DM annihilation on the
CMB temperature power spectrum is highly degenerate with

50
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GW standard sirens
• Schutz in 86’ proposed using compact-binary-

coalescences as “standard sirens”. [Schutz 1986 Nature]

• Phase measurement gives redshifted chirp-
mass ℳz =(1+z)ℳ.

• Amplitude gives ratio of redshifted chirpmass5/3 
with luminosity distance DL.

• “Self-Calibrating” sources but no redshift.
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M,z degeneracy

• The problem is that we only get DL and the 
redshifted mass Mz=M(1+z)

z

M ?

• We need EM 
measurements of 
redshift to break 
the degeneracy.

• Therefore we 
need host galaxy 
identification.

Thursday, 23 May 13



344 K. Hurley et al.

Figure 1. The original IPN error trapezium (dashed line), the 3σ refined
error ellipse for the position of GRB 051103 (solid line) and the fields of the
region studied using KPNO (large squares). The asterisk indicates the centre
of the ellipse and the most likely arrival direction of the burst. Approximately
65 arcmin2 of the ellipse are contained within the old error box. These are
imposed upon an image of the area surrounding M81 from the Digital Sky
Survey. The possibility that this burst came from the inner disc of M81 is
firmly ruled out. However, the brightest GALEX UV knots noted by Ofek
et al. (2006) are within the ellipse. Lipunov et al. (2005b) noted the presence
of two galaxies within the initial error box, PGC 2719634 and PGC 028505.
The former galaxy lies at the 18 per cent confidence contour of the ellipse,
and remains a plausible host candidate, while the latter lies at the 0.03 per
cent contour, and is unlikely to be the host.

area 104 arcmin2. The chi-square for the error ellipse centre is 0.9
for three degrees of freedom (d.o.f.; five annuli minus two fitted
coordinates). The area of the initial error box was 240 arcmin2.1

The initial error box and the final error ellipse are shown in Fig. 1.

3 TIME H ISTO RY

The RHESSI time history of GRB 051103 is shown in the top panel
of Fig. 2. A distinctive signature of all three previously observed
giant SGR flares within our Galaxy and the Large Magellanic Cloud
(LMC) to date is the periodic extended component following the
initial short-duration peak. Among these three events, the periods of
this extended tail have clustered around a narrow range of 5–8 s and
also have a relatively narrow range of total isotropic energy releases
of 1–4 × 1044 erg. This signal lasts for many minutes following
the bursts but falls off rapidly after a few hundred seconds. While
extended emission is frequently detected following cosmological
short-hard bursts, such emission is not periodic. Therefore, detection
of a periodic component of emission would be considered a strong
confirmation of an SGR origin.

None of the IPN light curves shows obvious evidence for ex-
tended emission (pulsed or otherwise) following the burst. How-
ever, it is conceivable that a marginally detected signal could be
present within the noise. To search for such a component, we ac-
quired Swift–BAT data for GRB 051103 (binned at 64 ms) and used
the Lomb (1976) periodogram to calculate the relative power in the

1 A typographical error in GCN 4197 incorrectly gave the area as
120 arcmin2.

Figure 2. Time history of GRB 051103, and evolution of the spectrum. The
top plot shows the dead-time corrected RHESSI light curve (60 keV–3 MeV)
with 1-ms time resolution, starting at 09:25:42.184 UT. The background
count rate is 0.55 counts ms−1 and has not been subtracted. The time history
has an e-folding rise time of 1.2 ± 0.04 ms, an e-folding decay time of
28.6 ± 0.6 ms and a T90 of 100 ± 4 ms. The middle and bottom plots show
the evolution of the best-fitting peak spectral energy and power-law index
for the CPL model. The black points are RHESSI only, while the grey points
are joint fits between RHESSI and Konus-Wind.

signal following the burst at periods up to about 20 s. We created
periodograms for all of the four BAT energy channels, which cover
the energy range 15–350 keV (and for combinations of channel
sums) and for various time ranges following the emission (ranging
from the first 60 s to the first 300 s.) To assess the significance of
any peaks in the power spectrum, we performed a Monte Carlo
analysis by repeatedly randomizing the order of the 64 ms time bins
for each data set over the range of interest and measuring the rate
of occurrence of independent peaks above various power levels. We
identified no peaks with greater than 98 per cent significance in any
channel or time range.

This non-detection is expected. To assess the general detectability
of periodic post-flare emission from extragalactic giant magnetar

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 403, 342–352

Gamma-ray bursts

• GRBs represent an EM counterpart with 
redshift obtained from the host galaxy. [Dalal et al 
2006 PRD, Nissanke et al 2010 ApJ, Zhao et al 2011 PRD]

Hurley et al 2010

M81

Zhao et al 2010

!w0 ¼ 0:064; !wa ¼ 0:388: (35)

We find that the values of !w0 and !wa become much
smaller in this case. The two-dimensional uncertainty con-
tour of w0 and wa is also plotted in Fig. 3 (black curve, i.e.,
line 1, in the left panel). This figure shows that there is
correlation between the parameters w0 and wa. Recall that
a goal of the dark energy programs is to test whether
dark energy arises from a simple cosmological constant,
(w0 ¼ "1, wa ¼ 0). For a given data set we can do better
(as far as excluding the cosmological constant model is
concerned) than simply quoting the values of !w0 and
!wa. This is because the effect of dark energy is generally
not best constrained at z ¼ 0. For the phenomenological
form of the EOS of the dark energy wðzÞ ¼ w0 þ
waz=ð1þ zÞ, the constraint on wðzÞ varies with the redshift
z. So, similar to [6], we can define the best pivot redshift,
denoted as zp, where the uncertainty in wðzÞ equals the
uncertainty in a model that assumes wa ¼ 0. In this
paper, we denote the EOS at this best pivot redshift as
wp & wðzpÞ. The best pivot redshift zp can be calculated

by zp ¼ "1=ð1þ !wa

!!w0
Þ, where ! is the correlation coeffi-

cient of w0 and wa. The value of !wp is calculated by

!wp ¼ !w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1" !2

p
. In this case (two free parameters),

the results for zp and !wp are

zp ¼ 0:188; !wp ¼ 0:019: (36)

The value of !wp as well as that of !wa are commonly
used to describe the detection ability of the experiments
[6].
On the other hand, we can also fix the values of the

parameters (w0, wa) to be their fiducial values, and only
consider ("m, "k, h0) as free parameters. By using the
results in Table I, we obtain

!"m ¼ 0:021; !"k ¼ 0:087;

!h0 ¼ 5:48' 10"3: (37)

Again we find that the values of these errors, especially the
values of !"m and !"k, are much smaller that those in
Eq. (34). These results show that the GW standard sirens
can constrain the dark energy parameters rather well, on
condition that we can break the strong degeneracy between
the parameters (w0, wa) and the parameters ("m, "k, h0).
In the next subsection, we will find that this can be realized
if we consider the CMB observations as a prior.

FIG. 3 (color online). The two-dimensional uncertainty contours of the dark energy parameters w0 and wa in the case with uniform
distribution.

TABLE II. GW Fisher matrix in the case with nonuniform distribution.

w0 wa "m "k h0

w0 0:256 794' 104 0:427 648' 103 0:731 269' 104 0:244 368' 104 0:194 634' 105

wa 0:427 648' 103 0:762 633' 102 0:129 200' 104 0:399 934' 103 0:303 753' 104

"m 0:731 269' 104 0:129 200' 104 0:219 941' 105 0:682 599' 104 0:529 628' 105

"k 0:244 368' 104 0:399 934' 103 0:682 599' 104 0:234 666' 104 0:186 267' 105

h0 0:194 634' 105 0:303 753' 104 0:529 628' 105 0:186 267' 105 0:162 814' 106
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FIG. 3: Two dimensional posterior distributions for the sky position of a sample source as observed by the HLV network (left),
the HLVJ network (centre) or by the HLVJI network (right). The source signal-to-noise ratios for this particular injection are
H:7.1 L:7.5 V:8.5 J:7.1 I:7.0. The remaining parameters are given in Table I. In both panels, the cross indicates the location of
the GW real host. The (coloured) dots indicate the galactic population identified as consistent with the GW event, colourcoded
according to their redshift while the black dots indicate all the galaxies within the field of view.Left panel: two dimensional
posterior distribution for ↵ and � for the HLV network for which ⇢network ' 13.4. The contours indicate the 95% and 75%
confidence intervals. The 95% confidence area is equal to 14.8 deg2 giving a total number of possible hosts of 600. Centre

panel: two dimensional posterior distribution for ↵ and � for the HLVJ network for which ⇢network ' 15.1. The contours
indicate the 95% and 75% confidence intervals. The 95% confidence area is equal to 3.9 deg2, within which the number of
possible hosts identified is 339. Right panel: two dimensional posterior distribution for ↵ and � for the HLVJI network for
which ⇢network ' 17.7. The contours indicate the 95% and 75% confidence intervals. The 95% confidence area is equal to 2.2
deg2, within which the number of possible hosts identified is 230.

DL/Mpc z dec/rad R.A./rad ◆/rad  /rad M/M� ⌘ ⇢H ⇢L ⇢V ⇢J ⇢I
313 0.069381 0.435262 2.142747 0.339614 0.519744 6.350444 0.178603 7.1 7.5 8.5 7.1 7.0

TABLE I: Summary of the properties of the source to which the results presented in the subsection refer.
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FIG. 4: Top panels: joint two dimensional posterior distributions for the redshift and for h of the same source as in Fig. 3
as observed by the HLV network (left), the HLVJ network (centre) or by the HLVJI network (right). The star indicates the
indicates the real value of the redshift and of h. Bottom panels: joint two dimensional posterior distributions for h and cos ◆.
The star indicates the injection value. In all panels, the contours indicate the 95%, 75%, 50%, 25% and 5% confidence intervals.
In all cases it is evident the strong correlation between h and z, which is an obvious consequence of Eq.(7), and between h
and cos ◆. This last degeneracy is just the translation of the known DL–◆ degeneracy that ultimately is the limiting factor
in the determination of the parameters appearing in the amplitude of the GW. Moreover, the distributions are multimodal,
corresponding to the di↵erent combinations of h, z and cos ◆ that give constant DL. The accuracy of the estimation of the
redshift is similar for all networks. However, it is noticeable the increase in resolving power for cos ◆ when more detectors are
considered.

for ↵ and � for the two networks under consideration for the source whose parameters are given in Table I. The

Galaxy catalogues

• Del Pozzo extended the idea to make use of 
galaxy catalogues to identify hosts. [Del Pozzo 2012 PRD]

• The redshift can 
then be obtained.

• Any confusion on 
between host 
galaxies is 
averaged out with 
many sources.

Del Pozzo 2012
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Fig. 1. Left panel: Fractional error of the redshift as a function of the true redshift for the
Einstein Telescope (circles), and the corresponding sky location and orientation-averaged Fisher
matrix results1 (dashed line). The fractional error varies between 10-100 percent. Right panel:
Distribution of fractional bias, (zmed − ztrue)/(∆z), where zmed is the median redshift and ztrue
is the true redshift. No systematic bias is found.

3. Results & Discussion

The left panel of Fig. 1 shows the fractional error of the redshift, ∆z/z (where
∆z denotes the 68% confidence interval), for 197 sources with a network SNR (ET
comprises of three co-located detectors) greater than 8. These results are compared
to the Fisher matrix calculations similar to those in Ref. 1 but with the ET-B
PSD. In line with the Fisher Matrix calculations, the redshift can be found with an
accuracy of O(10−1), and the accuracy decreases as the redshift increases.

The right panel of Fig. 1 shows the distribution of the fractional bias, (zmed −
ztrue)/(∆z), where zmed is the median redshift and ztrue is the true redshift, for the
same set of sources as the left panel. No systematic bias is found.

The results shown in Fig. 1 suggest that it is indeed possible to measure the
redshift by supplementing the point-particle description of the phase with correc-
tions due to the NS tidal deformability. Whether the accuracies shown in Fig. 1
are sufficient to perform competitive cosmological inference will be the subject of
forthcoming publications.
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NS tidal effects

• CM & Read discovered 
that tidal effects in NS 
binaries break the M,z 
degeneracy.[Messenger & Read 2012 
PRL, Li et al 2013]

• The additional phase 
contribution is a function of 
the intrinsic mass!

• So you get the redshift 
without an EM observation. Li et al 2013

3

FIG. 2. Tidal distortion contribution to the quadrupole GW phase
�⇥ for the three representative EOSs. The tracks end at fend and
yield larger dephasings for stiffer EOSs, such as PS.

tative of a much larger sample of EOSs. Note that all of these
EOSs have a maximum mass 1.93 . Mmax/M� . 2.66.

Figure 1 illustrates the role played by fend. We consider
the PS EOS and non-spinning BHs and show the tracks of in-
spiralling BH-NS binaries at 100Mpc (red solid lines), along
with the sensitivity curves of AdLIGO (black line) and Ad-
Virgo (light-blue line). The signal amplitudes are averaged
over sky location and relative inclination of the binary. We
show explicitly only the strongest and weakest signal, which
refer to MNS = 1.9M�, q = 0.1 and to MNS = 1.2M�, q =
1/3, respectively. The tracks terminate at (fend, h̃(fend)

p
fend)

and their continuations as red dashed lines serve only as a ref-
erence. The shaded region, which is magnified in the right
panel, is the one spanned by the termination point for all com-
binations of MNS/M� 2 [1.2, 1.9] and q 2 [0.1, 1/3].
Dephasing and Overlaps. Once a binary with parameters
(q, a,MNS,⇥) is selected, we compute �⌅(fend). Overall, we
find that �⌅: (i) is greater for bigger ⇥’s, i.e. for more de-
formable NSs (see Fig. 2); (ii) grows with q, i.e. for com-
parable masses; (iii) decreases as MNS [cf. Eq. (21) in [6]];
(iv) depends only weakly on the BH spin, since the only
spin dependence may come through fend, but binaries with
fend = ftide < fISCO are hardly affected, since ftide is not very
sensitive to a, while binaries with fend = fISCO < ftide are
those with high MNS and low ⇥, so that the gain or loss in
fISCO does not modify �⌅ significantly.

To determine whether the dephasings found may affect the
detection of BH-NS inspiral events, we compute, for each
binary, the overlap between the point-particle model of the
GW inspiral signal (hPP) and the one which includes tidal
deformability effects (h�); this is the normalized inner prod-
uct of the two signals, maximised over time and phase shifts,
i.e. O[hPP , h� ] ⌘ max{t0,�0}

hh
PP

|h
�
ip

hh
PP

|h
PP

ihh
�
|h

�
i

, where the

inner product is hhPP |h�i ⌘ 4< R fend

fstart
df

h̃
PP

(f)h̃⇤
�
(f)

Sh(f)
, Sh(f)

being the noise power spectral density of a chosen detector.
Note that we are implicitly assuming that the waveforms in-
cluding tidal effects are the “real” signals and treating the
point-particle waveforms as the templates used to detect them.

Our results for the three EOSs considered and a BH with
a = 0 are shown in Fig. 3 for AdLIGO. Note that for any EOS
choice and for any combination of the BH and NS masses, the
overlap is always greater than 0.997, which corresponds to a
1% loss of signals; this is true even for spins up to a = 1.

FIG. 3. Overlaps between PN waveforms for BH-NS binary systems
modelled as point-particles (“PP”) and with the inclusion of tidal dis-
tortion effects (“�”). The overlap is calculated for the AdLIGO de-
tector and for non-spinning BHs.

The smallest overlap is given by the PS EOS combined with
MNS = 1.2M�, q = 1/3, and a = 1 (inclusion of spin
changes overlaps by < 10�3). Hence, even if all binaries were
to have these extreme properties, the loss of signals would be
less than 1%. All in all, BH-BH inspiral templates will allow
second-generation interferometers to detect inspiralling BH-
NS binaries with less than a 1% loss of signals. Similar re-
sults hold for the third-generation detector Einstein Telescope
(ET) [26], with a minimum possible overlap of about 0.995.
Measurability. Determining that the fraction of lost signals
is below 1% does not address the question of whether the
detected signals may be used to learn about the EOS. To
address this point, we consider a nominal detector-binary
distance of 100Mpc and calculate the distinguishability as
�hPP,� ⌘ hhPP �h�|hPP �h�i & 2(1�O[hPP, h�])⇤2, where
⇤2 = hhPP|hPPi ' hh�|h�i is the signal-to-noise-ratio (SNR)
and we neglected the term hhPP|hPPi�hh�|h�i ⇠10�4. Since
we treat hPP as the “template” and h� as the “signal”, a neces-
sary (but not sufficient) condition to distinguish between the
two is that �hPP,� > 1 [27]. Clearly, the greater �hPP,�, the
higher the chances of measuring the tidal effects.

In Fig. 4, we consider AdLIGO and report �hPP,� for bi-
naries with a = 0. In calculating the distinguishability, we
average the signal amplitudes both over sky location and over
relative inclination of the binary. Note the existence of a re-
gion where �hPP,� < 1 for all EOSs (white area) in the space
of parameters (q,MNS); this indicates that the inspiral of BH-
NS binaries falling in this region will not be distinguishable
from a BH-BH inspiral. For larger mass ratios and smaller NS
masses, �hPP,� increases, becoming equal to 1 first for the PS
EOS (red-shaded area) and then for the less stiff GNH3 EOS
(blue-shaded area). The maximum value of �hPP,� is ⇠ 10
(⇠ 5) for the PS (GNH3) EOS. Note that the black star pin-

Pannaralle et al 2011
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Statistical properties
• Idea first proposed by Marković 93’ and Finn & 

Chernoff 93’ to use the distribution of measured 
SNRs. [Markovic 1993 PRD, Finn & Chernoff 1993 ApJ, Finn 1996 PRD]

z

Mz
=M(1+z)

SNR

N

f(Ω,sfr,mdist)
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Statistical properties
• The idea was expanded upon by Taylor et al 

2011. [Taylor et al 2011 PRD, Taylor et al 2012 PRD]

• Where the mass distribution and star formation 
rate are included in the model.

Taylor & Gair 2012
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Space based detectors

• DL,z relation investigated for LISA by Holz & 
Hughes 2007. [Holz & Hughes 2007 ApJ]

the merged remnant several years after the merger, leading to an
afterglow that should be measurable by next-generation X-ray
telescopes.

Other models suggest that there may be an electromagnetic
precursor to the merger rather than a delayed glow. One ex-
ample is discussed by Armitage & Natarajan (2002). They ar-
gue that gas is driven onto the larger member of the binary by
the secondary’s in-spiral, leading to super-Eddington accretion.
In this model, much of the inner disk may be expelled from the
system in a high-velocity (!104 km s"1) outflow. Such strong
outflows could flag a recent or impending merger. A similar fam-
ily of models (Sillanpää et al. 1988; Lehto & Valtonen 1996)
explains periodic variations in the BL Lac object OJ 287 by a
tight, eccentric binary system with mass ratio of about 1:100.
Flaring outbursts from this quasar are explained as arising from
the secondary periodic crossing of the primary’s accretion disk.
Given the great payoff that would follow from associating a
counterpart to a GWevent, we strongly advocate continuing to
develop and refine models of BBH mergers.

It is worth noting that, for a small fraction of binaries (as-
suming a sufficiently high event rate), LISAwill provide an error
box of P50 and an estimate of the time of merger about a day
in advance. Regardless of the state of theoretical predictions,
we imagine that in such cases there will be great interest in
searching the GW source error box for any observational coun-
terparts to the merger. Indeed, as we briefly discuss in x 5, the
number of relevant galaxies in the LISA error box may be fairly
small, so associating an EM counterpart with the GWevent may
be tractable.

4. GRAVITATIONAL LENSING

Having discussed the impressive quality of GW standard
sirens, we turn now to an important caveat: the impact of grav-
itational lensing on the distance measurement. GWs are lensed
exactly as EM radiation is lensed. Since we expect BBH events
to come from rather large redshift (zk 1), weak lensing in the
GW data sets should be common (Marković 1993; Wang et al.
1996; in addition to the occasional strongly lensed source).

A lens with magnification ! will distort the inferred lu-
minosity distance to the source; if the true distance is DL , we
measure DL /

ffiffiffi
!

p
, incurring a ‘‘systematic’’ error!DL /DL ¼ 1"

1/
ffiffiffi
!

p
. We estimate the error such lensing is likely to introduce

by convolving this quantity with the expected magnification

distribution, p(!) (Holz & Wald 1998; Wang et al. 2002); an
example of this distribution is shown in Figure 7. Using pa-
rameters appropriate to a "CDM model of the universe, we
find a mean error at z ¼ 2 of h!DL /DLi ’ 0:005, with a standard
deviation h(!DL /DL)

2i1=2 ’ 0:05. The dashed line in Figure 6
shows the contour we expect from the two GW sources when
lensing errors are included. The parameter accuracies are sig-
nificantly degraded.
Of course, this magnification bias affects all standard can-

dles, not just GWs. The rate of Type Ia SNe, however, is high
enough to sufficiently sample the entire lensing distribution and
thus average away the bias. Missions such as SNAP are de-
signed to observe thousands of SNe at high redshift, in large
part to overcome gravitational lensing. Indeed, this may allow
one to measure the lensing signal well enough to infer char-
acteristics of the lensing matter (Metcalf & Silk 1999; Seljak &
Holz 1999). This is unlikely to be the case with BBH GWs; the
rate of mergers will likely be much lower than that of SNe
(Richstone 1998; Haehnelt 1998), so we cannot count on enor-
mous numbers of events. We also emphasize that we do not ex-
pect to be able to correct for gravitational lensing effects on
a case-by-case basis (Dalal et al. 2003). Lensing, therefore, will
introduce an insurmountable error of !5%–10% for each in-
dividual high-redshift event, significantly greater than the in-
trinsic distance error.

5. IDENTIFYING THE COUNTERPART

In order to provide data on the distance-redshift curve,
a GW event must be associated with an ‘‘electromagnetic’’
counterpart—GWs provide an accurate measure of luminosity
distance but give no direct information about redshift. This is
the weakest link in our analysis; we do not know whether such
counterparts exist. However, a simple counting argument sug-
gests that the number of relevant galaxies in the LISA error cube
may be fairly small. We approximate the redshift distribution of
source galaxies by

dN

dR d#
/ R" exp " R=R$ð Þ#

h i
; ð6Þ

where R is the comoving distance; we take " ¼ 1, # ¼ 4, and
R$ ¼ c/H0 (Kaiser 1992; Hu 1999). We normalize this to a pro-
jected number density of

dN

d#
¼

Z
dR

dN

dR d#
’ 300 galaxies arcmin"2; ð7Þ

approximating the Hubble Deep Field (Williams et al. 1996).

Fig. 6.—Likelihood contours for measurement of the matter density #m and
dark energy equation-of-state parameter w (with the pressure and density of the
dark energy related by p ¼ w$). We assume that the universe is flat, and that the
underlying model has #m ¼ 0:3 and w ¼ "1. The two GW sources are at z ¼ 1
and 3, while the SNAP SNe are evenly distributed within 0:7 < z < 1:7. [See
the electronic edition of the Journal for a color version of this figure.]

Fig. 7.—Differential probability of magnification by gravitational lensing,
p(!), for sources at z ¼ 1:5 in a concordance universe (seeWang et al. [2002] for
details).

HOLZ & HUGHES20 Vol. 629

Holz & Hughes 2007

• Statistical approach taken 
by Petiteau et al 2011. 
[Petiteau et al 2011 ApJ]

• Good localisation makes 
host identification 
tractable.

• Gravitational lensing is a 
major concern.

the merged remnant several years after the merger, leading to an
afterglow that should be measurable by next-generation X-ray
telescopes.

Other models suggest that there may be an electromagnetic
precursor to the merger rather than a delayed glow. One ex-
ample is discussed by Armitage & Natarajan (2002). They ar-
gue that gas is driven onto the larger member of the binary by
the secondary’s in-spiral, leading to super-Eddington accretion.
In this model, much of the inner disk may be expelled from the
system in a high-velocity (!104 km s"1) outflow. Such strong
outflows could flag a recent or impending merger. A similar fam-
ily of models (Sillanpää et al. 1988; Lehto & Valtonen 1996)
explains periodic variations in the BL Lac object OJ 287 by a
tight, eccentric binary system with mass ratio of about 1:100.
Flaring outbursts from this quasar are explained as arising from
the secondary periodic crossing of the primary’s accretion disk.
Given the great payoff that would follow from associating a
counterpart to a GWevent, we strongly advocate continuing to
develop and refine models of BBH mergers.

It is worth noting that, for a small fraction of binaries (as-
suming a sufficiently high event rate), LISAwill provide an error
box of P50 and an estimate of the time of merger about a day
in advance. Regardless of the state of theoretical predictions,
we imagine that in such cases there will be great interest in
searching the GW source error box for any observational coun-
terparts to the merger. Indeed, as we briefly discuss in x 5, the
number of relevant galaxies in the LISA error box may be fairly
small, so associating an EM counterpart with the GWevent may
be tractable.

4. GRAVITATIONAL LENSING

Having discussed the impressive quality of GW standard
sirens, we turn now to an important caveat: the impact of grav-
itational lensing on the distance measurement. GWs are lensed
exactly as EM radiation is lensed. Since we expect BBH events
to come from rather large redshift (zk 1), weak lensing in the
GW data sets should be common (Marković 1993; Wang et al.
1996; in addition to the occasional strongly lensed source).

A lens with magnification ! will distort the inferred lu-
minosity distance to the source; if the true distance is DL , we
measure DL /

ffiffiffi
!

p
, incurring a ‘‘systematic’’ error!DL /DL ¼ 1"

1/
ffiffiffi
!

p
. We estimate the error such lensing is likely to introduce

by convolving this quantity with the expected magnification

distribution, p(!) (Holz & Wald 1998; Wang et al. 2002); an
example of this distribution is shown in Figure 7. Using pa-
rameters appropriate to a "CDM model of the universe, we
find a mean error at z ¼ 2 of h!DL /DLi ’ 0:005, with a standard
deviation h(!DL /DL)

2i1=2 ’ 0:05. The dashed line in Figure 6
shows the contour we expect from the two GW sources when
lensing errors are included. The parameter accuracies are sig-
nificantly degraded.
Of course, this magnification bias affects all standard can-

dles, not just GWs. The rate of Type Ia SNe, however, is high
enough to sufficiently sample the entire lensing distribution and
thus average away the bias. Missions such as SNAP are de-
signed to observe thousands of SNe at high redshift, in large
part to overcome gravitational lensing. Indeed, this may allow
one to measure the lensing signal well enough to infer char-
acteristics of the lensing matter (Metcalf & Silk 1999; Seljak &
Holz 1999). This is unlikely to be the case with BBH GWs; the
rate of mergers will likely be much lower than that of SNe
(Richstone 1998; Haehnelt 1998), so we cannot count on enor-
mous numbers of events. We also emphasize that we do not ex-
pect to be able to correct for gravitational lensing effects on
a case-by-case basis (Dalal et al. 2003). Lensing, therefore, will
introduce an insurmountable error of !5%–10% for each in-
dividual high-redshift event, significantly greater than the in-
trinsic distance error.

5. IDENTIFYING THE COUNTERPART

In order to provide data on the distance-redshift curve,
a GW event must be associated with an ‘‘electromagnetic’’
counterpart—GWs provide an accurate measure of luminosity
distance but give no direct information about redshift. This is
the weakest link in our analysis; we do not know whether such
counterparts exist. However, a simple counting argument sug-
gests that the number of relevant galaxies in the LISA error cube
may be fairly small. We approximate the redshift distribution of
source galaxies by

dN

dR d#
/ R" exp " R=R$ð Þ#

h i
; ð6Þ

where R is the comoving distance; we take " ¼ 1, # ¼ 4, and
R$ ¼ c/H0 (Kaiser 1992; Hu 1999). We normalize this to a pro-
jected number density of

dN

d#
¼

Z
dR

dN

dR d#
’ 300 galaxies arcmin"2; ð7Þ

approximating the Hubble Deep Field (Williams et al. 1996).

Fig. 6.—Likelihood contours for measurement of the matter density #m and
dark energy equation-of-state parameter w (with the pressure and density of the
dark energy related by p ¼ w$). We assume that the universe is flat, and that the
underlying model has #m ¼ 0:3 and w ¼ "1. The two GW sources are at z ¼ 1
and 3, while the SNAP SNe are evenly distributed within 0:7 < z < 1:7. [See
the electronic edition of the Journal for a color version of this figure.]

Fig. 7.—Differential probability of magnification by gravitational lensing,
p(!), for sources at z ¼ 1:5 in a concordance universe (seeWang et al. [2002] for
details).
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Space based detectors

• Directly measuring the expansion of the 
universe during a GW event. [Seto et al 2001 PRL, Nishizawa et al 
2011 PRD]

• Again, breaks the M,z degeneracy.

dependent phase arising from the orbital evolution, and at
the order of the restricted 1.5 post-Newtonian (PN) ap-
proximation, it is given by [19,20]

!ðfÞ ¼ 2!ftc $"c $
!

4
þ 3

128
ð!MzfÞ$5=3

&
!
1þ 20

9

"
743

336
þ 11

4
#
#
#$2=5ð!MzfÞ2=3

$ 16!#$3=5ð!MzfÞ
$
; (13)

where tc and "c are the time and phase at coalescence,
respectively. The first term in the bracket in Eq. (13)
corresponds to Newtonian-order dynamics and the other
remaining terms represent the post-Newtonian-order cor-
rections in powers of v' ð!MzfÞ1=3. In principle, there
additionally appears a phase correction due to cosmic
expansion, and the Hubble parameter HðzÞ can be also
measured from this term [1,22]. Although the inclusion
of the phase correction slightly changes the size of the
errors in binary parameters, it does not seriously affect
the estimation of the luminosity distance dL. In addition,
the sensitivity of the phase correction to the Hubble pa-
rameter is rather small. Thus, we may safely ignore the
phase correction due to cosmic expansion in the subse-
quent analysis.

In Eqs. (12) and (13), there are five unknown parameters
to be determined observationally, i.e., Mz, #, tc, "c, and
dL. Except for the luminosity distance, the four parameters
merely carry the information on the individual property of
the binary system. For simplicity, we consider the equal-
mass NS binaries with 1:4M(, which lead to Mz ¼
1:22ð1þ zÞM( and # ¼ 1=4, and set the other parameters
to tc ¼ 0 and "c ¼ 0.

Since the GW observation can only determine the red-
shifted chirp massMz, the redshift of each binary has to be
measured from an electromagnetic counterpart. According
to Cutler and Holz [4], the angular resolution of BBO is
'1–100 arcsec2, with which we can identify the host gal-
axy of the binary. We thus suppose that the redshift of any
binary system is obtained from the electromagnetic obser-
vations. Note that the Doppler effect by the local motion
also affects the redshifted chirp mass, and the dipole an-
isotropy might be measured through the spatial distribution
of the observed chirpmass if the intrinsic scatter in themass
distribution of NS binaries is very small. The feasibility to
measure the dipole anisotropy from the chirpmass might be
interesting, but we need a more detailed study on the
formation history of NS binaries, and we here simply
ignore this effect in the parameter estimation.

The fundamental basis to estimate the distance error for
a single binary is the Fisher matrix formalism. The Fisher
matrix for a single binary is given by [19,23]

"ab ¼ 4
X8

i¼1

Re
Z fmax

fmin

@a ~h
)
ðiÞðfÞ@b ~hðiÞðfÞ

PðfÞ df; (14)

where @a denotes a derivative with respect to a parameter
$a; Mz, #, tc, "c, and dL. The quantity ~hðiÞ represents the
GW signal obtained from the i-th interferometer. Since two
independent signals are obtained for each cluster [24],
DECIGO has the eight interferometric signals in total,
each of which is supposed to have an identical detector
response and noise power spectrum PðfÞ. The analytical fit
of noise spectrum [25] is given by

PðfÞ ¼ 4:21& 10$50

"
f

1Hz

#$4
þ 1:25& 10$47

þ 3:92& 10$49

"
f

1Hz

#
2
Hz$1:

In Fig. 2, the noise spectrum of DECIGO is shown,
together with the evolutionary tracks of the NS binary
located at three different redshifts, z ¼ 0:1, 1, and 5. In
each track, the symbols indicate the frequency at the 10, 3,
and 1 yr before the time of binary coalescence (from left to
right). In this respect, the lower cutoff of the frequency fmin

should be incorporated into the integration in Eq. (14), and
is given by the function of observation time Tobs as well as
the redshift and mass:

fmin ¼ 0:233
"
1M(
Mz

#
5=8

"
1 yr

Tobs

#
3=8

Hz: (15)

Note that the coalescence frequency of the NS binary is
typically'kHz, and thus the upper cutoff of the frequency
naturally arises from the noise curve. For the computa-
tional purpose, we set fmax ¼ 100 Hz.
Given the numerically evaluated Fisher matrix, the

marginalized 1-sigma error of a parameter, #$a, is esti-
mated from the inverse Fisher matrix

FIG. 2 (color online). Sky-averaged DECIGO noise curve.
(Arm angle 60* is taken into account.) Diagonal lines represent
frequency evolutions of an NS-NS binary at z ¼ 5 (solid red
line), z ¼ 1 (dotted green line), and z ¼ 0:1 (dashed blue line).
Diamonds on the lines from the right to the left denote the
frequency of the binary 1 yr, 3 yr, and 10 yr before the merger.

ATSUSHI NISHIZAWA, ATSUSHI TARUYA, AND SHUN SAITO PHYSICAL REVIEW D 83, 084045 (2011)

084045-4

-1400 -1200 -1000 -800 -600 -400 -200
t

-1.0

-0.5

0.5

1.0
hHtL

-1400 -1200 -1000 -800 -600 -400 -200
t

-1.0

-0.5

0.5

1.0
hHtL

-1400 -1200 -1000 -800 -600 -400 -200
t

-1.0

-0.5

0.5

1.0
hHtL

-1400 -1200 -1000 -800 -600 -400 -200
t

-1.0

-0.5

0.5

1.0
hHtL

t≣zNishizawa et al 2011

stretched less
stretched more

∆t~1sec

DECIGO

Thursday, 23 May 13



Summary
• GW sources are very useful cosmological 

probes.

• They will provide measurements independent of 
the “cosmic distance ladder”.

• We have a number of different methods with 
and without EM counterparts.

• Calibration may end up being a limiting 
systematic factor.

• Lensing is a known limiting statistical factor.

• We need to compare our potential sensitivities 
to future EM experiments.
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Thanks
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Schutz 1986 (Nature)

• Initially only focussed on H0 estimation at 3% accuracy

• First discussion of clustering of galaxies for identification

• The first to define a standard siren (but didn’t use the term)

• Found 2 spelling typos in published version.

• Hinted at optical counterparts

©          Nature Publishing Group1986

©          Nature Publishing Group1986

©          Nature Publishing Group1986

• The redshift comes from EM 
identification of the host

• The main idea is that the distance 
is obtained from GW alone.
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Chernoff & Finn 1993

• Characterise the rate of detections as function 
of SNR threshold, hubble constant and chirp 
mass.

• Estimating ~50 per year with Initial LIGO

• Predict H0 to 10% with 100 detections (and q 
to 20% with 3000). 

• No reliance on additional EM measurements

• Assume chirp mass distribution is 
independent of z (age).

• They allow the coalescence rate to 
vary with z but assume it is known.

• Seems to show that rate variation 
with z is highly correlated with 
results.

19
93
Ap
J.
..
41
1L
..
.5
C
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Finn 1996

• Extension of the 93 work
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Distance measures

• The distance 
modulus
“The magnitude difference 
between an object’s observed 
bolometric flux and what it 
would be if it were at 10 pc.”

Hogg 2000

Figure 4: The distance modulus DM . The three curves are for the three world models,
(ΩM, ΩΛ) = (1, 0), solid; (0.05, 0), dotted; and (0.2, 0.8), dashed.

13

Vega, through that bandpass (don’t ask me about “AB magnitudes”). The distance modulus
DM is defined by

DM ≡ 5 log

(

DL

10 pc

)

(25)

because it is the magnitude difference between an object’s observed bolometric flux and
what it would be if it were at 10 pc (this was once thought to be the distance to Vega).
The distance modulus is plotted in Figure 4. The absolute magnitude M is the astronomer’s
measure of luminosity, defined to be the apparent magnitude the object in question would
have if it were at 10 pc, so

m = M + DM + K (26)

where K is the k-correction

K = −2.5 log

[

(1 + z)
L(1+z)ν

Lν

]

= −2.5 log

[

1

(1 + z)

Lλ/(1+z)

Lλ

]

(27)

(eg, Oke & Sandage, 1968).

8 Parallax distance

If it were possible to measure parallaxes for high redshift objects, the distance so measured
would be the parallax distance DP (Weinberg, 1972, pp 418–420). It may be possible, one
day, to measure parallaxes to distant galaxies using gravitational lensing, although in these
cases, a modified parallax distance is used which takes into account the redshifts of both the
source and the lens (Schneider, Ehlers & Falco, 1992, pp 508–509), a discussion of which is
beyond the scope of these notes.

9 Comoving volume

The comoving volume VC is the volume measure in which number densities of non-evolving
objects locked into Hubble flow are constant with redshift. It is the proper volume times
three factors of the relative scale factor now to then, or (1 + z)3. Since the derivative of
comoving distance with redshift is 1/E(z) defined in (14), the angular diameter distance
converts a solid angle dΩ into a proper area, and two factors of (1+ z) convert a proper area
into a comoving area, the comoving volume element in solid angle dΩ and redshift interval
dz is

dVC = DH
(1 + z)2 D2

A

E(z)
dΩ dz (28)

where DA is the angular diameter distance at redshift z and E(z) is defined in (14) (Weinberg,
1972, p. 486; Peebles, 1993, pp 331–333). The comoving volume element is plotted in
Figure 5. The integral of the comoving volume element from the present to redshift z gives

7

Thursday, 23 May 13



Distance measures

Figure 5: The dimensionless comoving volume element (1/DH)3 (dVC/dz). The three curves
are for the three world models, (ΩM, ΩΛ) = (1, 0), solid; (0.05, 0), dotted; and (0.2, 0.8),
dashed.
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• Co-moving density

“The volume measure in which 
number densities of non-
evolving objects locked into 
Hubble flow are constant with 
redshift.”

  

Hogg 2000
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