

Open charm production using the D*+ \rightarrow D⁰ π + decay in ALICE

Yifei Wang
for the ALICE collaboration
Physikalisches Institut,
University of Heidelberg

Heavy Flavour Quarks

X. Zhu, M. Bleicher, K. Schweda, H. Stoecker, N. Xu et al., PLB 647 (2007) 366.

- As beauty and top quarks, charm quark has heavy mass composition
- In QGP where the chiral symmetry is restored, charm quark remains heavy
- Charm is a good probe for the medium

The measurement of charm cross section allows:

- Test of pQCD
- Probe parton distributions
- Baseline for J/ψ enhancement in Pb + Pb^[1]

[1] P. Braun-Munzinger and J. Stachel, Nature 448(2007)302

Expectations for LHC

Cross-sections of interesting probes expected to increase relative to RHIC by factors

~ **10**
$$(c\overline{c})$$
 to

~
$$\mathbf{10^2}$$
 $(b\overline{b})$ to

 $> 10^5$ (very high p_T jets)

⇒ LHC is the ultimate machine for quark matter studies with hard-probes

Where does all the charm go?

PYTHIA: p+p collisions at 14 TeV, |y|<1 ALICE PPR II: Table 6.56

open charm measurement in

ALICE:

- $D^0 \to K^- \pi^+$ $D^0 \to K^- \pi^+ \pi^+ \pi^-$ R. Bala's talk
- $D^{*+} \rightarrow D^0 \pi^+$
- $\bullet \quad D^+ \rightarrow K^- \pi^+ \pi^+$
- $D_s^+ \rightarrow K^+ K^- \pi^+$ $\Lambda_c^+ \rightarrow p K^- \pi^+$
- $\Lambda_c^+ \rightarrow \Lambda \pi +$
- $\Lambda_c^+ \rightarrow p K_s^0$
- Measure open-charm mesons, e.g. D⁰ and D^{*} to address:
 - (a) total charm production in pp and AA
 - (b) heavy-quark collectivity in AA

A Large Ion Collider Experiment

$D^{*+} \rightarrow D^0 \pi^+ Channel$

$$K + \pi^+$$

D⁰ Mass m = 1864.5
$$\pm$$
 0.5 MeV Mean life c τ = 123.0 \pm 0.4 μ m D⁰ \rightarrow K⁻+ π ⁺ (3.80 \pm 0.07)%

D *+ Mass m = 2010.0
$$\pm$$
 0.5 MeV
Full width Γ = 96 \pm 22 keV
Kinematics q value: 39 MeV/c
D*+ \rightarrow D⁰ π + (67.7 \pm 0.5)%

W-M Yao et al, J. Phys. G: Nucl. Part. Phys. (2006) 1-1232

Impact parameter

- impact parameter ~80 μm for 1 GeV/c track
- provide pointing seperation between signal and background

Monte Carlo Inv. Mass Spectrum

- binomial + gaus fit
- fit range 0.14~0.16
 GeV
- signal and background counts extracted by integrating the fit function over $\pm 3\sigma$ region
- significance = S/√(S+B)

in 25M 10TeV MB pp simulation

D*+ reconstruction

Data sets:

98M events

D*+ reconstruction:

- D⁰ reconstruction with K,π
- select D^0 : $\pm 2\sigma$ (24MeV/ c^2)
- combine D^0 and soft π to reconstruct D^{*+}
- $\Delta M = M(K, \pi, \pi_{soft})$ - $M(K, \pi)$
- Δ M from PDG: 145.57MeV

Particle Identification

- PID used for K π from D⁰
- PID method:
 - TPC dE/dx: K π seperation below 600MeV/c
 - Time of flight: K π seperation below 1.5GeV/c
- no PID applied for π_{soft}

Inv. Mass in p_T (w/ TPC PID)

Inv. Mass in p_T (w/ TPC & TOF PID)

Sideband background

- select D⁰: $\pm 4\sigma \sim \pm 8\sigma$
- D⁰ width from simulation: $\sigma = 12$ MeV/c²
- reproduce the background shape

Conclusion

- ALICE has been taking data from p+p collisions @7TeV
- D^{*+} are reconstructed using $D^0 \pi^+$ decay channel

- Expect to collect 10⁹ events in year 2010
- LHC schedule 1 month Pb+Pb run at Nov. 2010

backup PID: TPC and TOF

