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Overview of the Hyper-K
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Multi-purpose detector, Hyper-K

•Proton decay 3σ discovery potential
• 5×1034 years for p→e+π0

• 1×1034 years for p→νK+

• Comprehensive study on ν oscillations
• CPV (76% of δ space at 3σ), <20o precision

• MH determination for all δ by J-PARC/Atm ν
• θ23 octant: sin2θ23<0.47 or sin2θ23>0.53
• <1% precision of Δm232

• test of exotic scenarios by J-PARC/Atm ν

• Astrophysical neutrino observatory
• Supernova up to 2Mpc distance, ~1SN /10 years 
• Supernova relic ν signal (~200ν events/10yrs)
• Dark matter neutrinos from Sun, Galaxy, and Earth
• Solar neutrino ~200ν events/day

Letter of Intent, Hyper-K WG, 
arXiv:1109.3262 [hep-ex]

Proton 
Decays

Sun

Supernova

accelerator

LBL study, Hyper-K WG, 
arXiv:1502.05199 and  
submitted to PTEP
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Hyper-K proto-collaboration w/ cooperation of 
KEK-IPNS and UTokyo-ICRR

Hyper-K Proto-Collaboration has been formed

Inaugural Symposium on 1/31, 2015

MoU signing by KEK/ICRR

- KEK-IPNS and Tokyo-
ICRR signed the MOU of the 
cooperation in promoting the 
Hyper-Kamiokande.
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Hyper-Kamiokande International Group

As of April 14, 2014

Europe 106
France
Italy
Poland
Russia
Spain

Switzerland
UK

10
13
4
7
3
22
47

Asia
Japan
Korea

72
64
8

Americas
Brazil
Canada
USA

62
2
19
41

- 240 people and growing!
- Hyper-K Governance Structure has been defined 
    - Steering Committee, International Board Representatives, 
and Convener Board  
- R&D fund and travel budget already secured in some countries, 
and more in securing processes.
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What’s next?:  Design Report

• Design Report to be prepared in 2015
• Optimum design, Construction cost/period, Beam&Near 
detectors, International responsibility

• International review under KEK-IPNS/ICRR to 
promote the project

• Start budget request in 2015~2016

• Start construction in 2018 
  → start operation in ~2025

It is critical period to promote the project

Still open for new collaborators
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Hyper-Kamiokande EU meeting@CERN 

27-28 April 2015 
• Meeting to discuss the European effort in Hyper-K 
• Open to anyone who has interest in Hyper-K, or is planning to join Hyper-

K, or is contributing  
• http://indico.cern.ch/e/ThirdEUHyperK 
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Design and ongoing studies
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Cavern Analysis Overview
• Elastic, static analysis was conduced and reported at the 

last meeting
- one calculation for the whole cavern. 
- evaluate the plasticity region based on elastic analysis

- Mohr-Coulomb’s criterion as failure criteria, general (mean) 
values for Young’s modulus 

- design PS anchors, rockbolts, and shotcrete to support the 
loosened area.

- elastic limit of the supports themselves not taken into account

11

• Elasto-plastic, static analysis
- step-by-step calculations for each excavation benches.
- perform calculation even after the stress exceeds the elastic limit.

- Hoek-Brown’s criterion as failure criteria, revised Young’s 
modulus

- strain softening calculation
- Designed supports are considered in the calculation 
- elastic limit of the supports also taken into account.

NEW
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Fig. 6.3 Division of a Tunnel Face of an Excavated Side-Wall Section of a Tank 
Cavern 

 
 
 
 
6.2 Construction Process 

The process of constructing the tank cavern was evaluated based on references to 
the process estimation standards in Japan. The results are shown in Table 6.1. It 
will take a little over two years to excavate the new and additional sections, 
approach tunnels, belt conveyor tunnels, etc. After constructing these tunnels, a 
little less than three years will be required to excavate the tank cavern. Thus, the 
total process is expected to be completed in just less than five years. 

As described in Section 3.4, displacements and loosened zones can change, 
depending on the results of the further detailed analyses. Although anchors and 
other supports could control such changes, the cost and excavation process will have 
to be modified depending on actual site conditions. 
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•Conceptual design of caverns, supports have been made.
•Estimation of excavation period/cost → Optimization

Waste Rock 
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Site
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Tank liner material

Pressure 

HDPE)sheet 

Slit)imita1ng)
a)crack) 

•Soak test 
•pure water, 1% Gd2(SO4)3 loaded

•Tensile creep test
•pressure test
•leak test at the penetrating part

Satisfactory results for Hyper-K

5mm High Density Polyethylene

Det. Water

Rock
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Photo-sensor candidates
highQE/CE Hybrid Det.Super-K PMT

Venetian 
blind 

dynode

highQE/CE PMT

Box&Line 
dynode

Avalanche 
photo-

detector

Quantum Efficiency　22% 30% 30%
Collection Efficiency　80% 93% 95%

Established by SK
price known in R&D

lower price expected

in R&D
lower price exp’d
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Higher QE achieved

High Quantum Efficiency (QE) of ~30% has been achieved ! 
for 50cm B&L PMT and HPD

Wave Length [nm]
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Photo-sensor performance

Time (ns)
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Super-K PMT
50cm HQE B&L
50cm HQE HPD

Super-K PMT
50cm HQE B&L
50cm HQE HPD

T distribution @1p.e. 1p.e. Q distribution multi-p.e. Q dist.

1PE 
2PE 

3PE 
4PE 

1PE 
2PE 

SK PMT B&L PMT HPD

1p.e. Δt (ns) 2.1 1.1 1.4

1p.e. ΔQ/Q (%)
Peak/Valley ratio

53
2.2

35
4.3

16
3.9

• Achieved better T&Q resolution
• Further tests are planned (test in water, long-term stability etc.)
• to be concluded by 2016
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50m

 Near Detectors for J-PARC beam

•Oscillation study
• Water target (same w/ the far detector, 
minimize nuclear uncertainty)
• NCπ0 BG measurement
• beam νe BG

• Other physics
• νμ, νe interaction studies
• Sterile ν searches

Conceptual design νPRISM
50m tall WČ

TITUS
WČ+MRD
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Worldwide R&D
New$11″$HQE$PMT$

by$ADIT/ETEL 
Low$capacity$AD,$
Pixelized$AD 

Improved$builtBin$HV,$
Low$noise$preamplifier 
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PD$protecHve$case$ MagneHc$shielding$

US 
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D Electronics and data acquisition system 23

FIG. 8. Schematic diagram of data readout and processing system.

.

TABLE VII. Calibration techniques used in Super-Kamiokande

Calibration source Purpose

Nitrogen-dye laser Timing response, charge linearity, OD

Laser with various wavelength Water attenuation & scattering

Xe lamp + scintillator ball PMT gain, position dependence

Deuterium-tritium (DT) fusion generator [16N] Low energy response

Nickel + 252Cf [Ni(n, �)Ni] Absolute gain, photo-detection e�ciency

Cosmic ray muon / ⇡0 / decay electron Energy calibration for high energy events

2. R&D work and alternative options434

Although the baseline design is proved to work with the Super-K experience, there are several435

ongoing R&D to improve the performance of the electronics/DAQ for Hyper-K. The current e↵ort436

includes the development of a front-end electronics based on FADC, R&D of an FPGA-based high437

precision TDC, and a more intelligent trigger for low energy events and/or events extending over438

multiple compartments. It is planned to test multiple options with a prototype detector to evaluate439

their feasibility and performance.440

E. Detector calibration441

In order to achieve the scientific goals of Hyper-K, precise calibration of the detector is indis-442

pensable. Because the Super-K detector has been operated successfully for more than a decade443

HK Electronics: FADC + Communication

4th Hyper-K Meeting
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RapidIO Test II

• Implemented 4 RapidIO cores in FPGA on each board; 

each RapidIO core has associated DMA engine.

• Managed to get each of 4 links running at 135MB/s; can 

also run faster, near 250MB/s, but needs to tweak DMA.

• Starting to work on the routing functionality; did some 

tests already, checking fail-over when cables are 

detached.

Terasic 

Board

Extension

Card

Trial&for&communica-on&
(RapidIO&in&FPGA&boards) Elec.&+&HV&modules&in&water 

Data/Clock/Power&
network&&in&water 

…&DAQ&system 

C Photosensors 21
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FIG. 7. Schematic diagram of the front-end module.

There have also been several attempts to improve the photon collection e�ciency with special394

lens systems, wavelength shifters, or mirrors attached to the existing sensors. The e↵ect of such395

additional system to the detector performance, such as angular acceptance and timing resolution,396

needs to be carefully studied.397

D. Electronics and data acquisition system398

1. Baseline design399

In terms of the required specifications and the number of photosensors in one compartment, the400

current design of the Hyper-K detector is similar to that of the Super-K detector. Therefore, it is401

possible for us to design the data acquisition system using the same concept as SK-IV, reading out402

all the hit information from the photosensors, including the dark noise hits.403

However, because the egg-shape of Hyper-K detector makes the cable routing and mechanical404

support di�cult to design. We are now planning to place the front-end electronics module and the405

power supply for the photosensor in the detector water, close to the photosensor. The underwater406

front-end electronics will be enclosed in a pressure tolerant water-tight housing, which have been407

used in other experiments with several established techniques.408

The schematic diagram of the front-end module is shown in Fig. 7. There are four main409410

functional blocks in the front-end board. One module accepts signals from 24 photosensors.411

The signal digitization block accepts the signals from the photosensors and convert them to the412
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Hyper-K
Physics Potentials
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PID likelihood sub-GeV 1ring (FC)
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Super Kamiokande IV 1775.6 days : Monitoring

e-like 3985 muon-like 3915

CCQE electron

Super Kamiokande IV 1775.6 days : Monitoring

CCQE muon

Detector performance for p-decays

• High mass (1Mton scale, 20×Super-K)

• Good ring-imaging capability at ~1GeV
• atmospheric ν, proton decays, accelerator ν

• Excellent particle ID (e or μ) capability > 99%
• Energy resolution for e and μ ~3%
• opportunity to improve more

• for proton decay search via p→e+π0

• good ~5% invariant proton mass resolution
• high 40% signal efficiency
• 99.998% atmospheric ν BG rejection

PID likelihood (atmν)

e-like μ-like

cosmic&µ''
(0.6&1.2GeV/c)�

PID'likelihood'parameter�

e&like�

Data'
MC�

mis-PID:
  Data: 0.00±0.16(stat.)%
  MC  : 0.10±0.10(stat.)%

PID likelihood (CRμ)

e-like μ-like
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Discovery potential in Hyper-K
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‣Discovery reach (3σ)  
‣τ(p→e+π0)~5×1034years（HK 10yrs）

‣Limit (90%CL)            
‣τ(p→e+π0)>1×1035years（HK 10yrs） 

p→e+π0 τproton=1.2×1034years
（SK 90% CL limit）

proton mass peak

BG

Only realistic proposal to reach the lifetime of 1035 years
for p→e+π0
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K+ lifetime
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Experimental test on Supersymmetry



Super-Kamiokande IV
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• For νe appearance in J-PARC νμ beam
• high 60% νe signal efficiency
• >99.9% νμCC rejection, 99% NC π0 
rejection

• opportunity to improve more

Detector performance for J-PARCν
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δCP dependence of observables
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Assumed systematic uncertainties

• Beam flux + near detector constraint

• Conservatively assumed to be the same

• Cross section uncertainties not constrained by ND

• Nuclear difference removed assuming water measurements

• Far detector 

• Reduced by increased statistics of atmospheric ν control sample

• Further reduction by new near detectors under study

ν modeν mode anti-ν modeanti-ν mode
νe νμ νe νμ

Flux&ND 3.0 2.8 5.6 4.2
XSEC model 1.2 1.5 2.0 1.4
Far Det. +FSI 0.7 1.0 1.7 1.1

Total 3.3 3.3 6.2 4.5

Uncertainty on the expected number of events at Hyper-K (%)

(T2K 2014)(T2K 2014)

νe νμ
3.1 2.7
4.7 5.0
3.7 5.0
6.8 7.6

Realistic estimation based on SK/T2K

− −
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Sensitivity to CP violation

• Exclusion of sinδ=0

• >3σ for 76% of δ

• >5σ for 58% of δ

• 8°-19° precision depending 
on the true value of δ
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Atmospheric ν
NH, previous 13 is fixed : sin2213 = 0.098 

3  

2  

Hierarchy sensitivity, 10 years of Atmospheric  data 

 Thickness of the band corresponds to uncertainty induced from cp  
Weakest sensitivity overall in the tail of the first octant 
 Hierarchy sensitivity is improved slightly after update 

 True for both hierarchies  
 

NH, Update 

3  

2  

Δχ
2

sin2θ23

Normal hierarchy

Hyper-K 10 years

sin22θ13=0.1

band: due to δ

2012.8.22 Roger Wendell  17 

NH, unknown IH, Unknown 13 is fixed : sin2213 = 0.10 

 Thickness of the band corresponds to the uncertainty from cp  

 Best value of cp = 40 degrees 
Worst value of cp = 140 (260) degrees, for 1st (2nd ) octant 

23 Octant sensitivity , 10 year Exposure 

3  

2  

3  

2  

Mass hierarchy θ23 octant

Complementary measurements to accelerator ν
Combined analysis of acc + atm ν will enhance capability
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Test of Sterile ν by atmospheric ν
Look for extra overall muon deficit or shape distortion 

Complementary to other experiments

|Uτ4|2<0.066 @99%CL
(0.164 in Super-K)

|Uμ4|2<0.029 @99%CL
(0.038 in Super-K)



Search for ν’s induced 
by dark matters
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FIG. 59. (Left) Cumulative calculated supernova rate versus distance for supernovae in nearby galaxies

(reproduced from [100]). (Right) Detection probability of supernova neutrinos versus distance at Hyper-K

assuming a 0.56 Megaton fiducial volume and 10 MeV threshold for this analysis. Black, green, and blue

curves show the detection e�ciency resulting in requiring at least or equal to one, two, and three events per

burst, respectively. Solid, dotted, and dashed curves are for neutrino oscillation scenarios of no oscillation,

N.H., and I.H., respectively.

observations indicate that the true nearby supernova rates are probably about 3 times higher than

this conservative calculation. Figure 59(right) shows detection probability versus distance for the

Hyper-K detector. In this estimate, energy of neutrino events is required to be more than 10 MeV

and the vertex position of the events should be within the fiducial volume (0.56 Megatons). If we

require the number of events to be more than or equal to one(two), the detection probability is

52⇠69%(17⇠33%) for a supernova at 4 Mpc. If we can use a tight timing coincidence with other

types of supernova sensors (e.g. gravitational wave detectors), we should be able to identify even

single supernova neutrinos. Assuming the observed supernova rate in nearby galaxies, we expect

to collect about 10-20 supernova neutrino events from them during 20 years of operating Hyper-K.

2. Supernova relic neutrinos

There are about 1020 stars in the universe (⇠1010 galaxies in the universe, and each galaxy

has about 1010 stars). Because about 0.3% of the stars have masses larger than 8 times the solar

mass, it is estimated that 1017 supernova explosions have occurred over the entire history of the

universe. This means that on average one supernova explosion has been occurring every second

~"0.1�
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• Astrophysical neutrinos such as galactic supernova, supernova in 
nearby galaxies, relic SN νs, solar νs 

• Energy threshold ~5MeV by established techniques of water 
purification, triggering system, analysis algorithms
• tagging capability of μ→eνν and nuclear de-excitation γ in p→νK+

• energy scale stability ~1%
• stable operation (small <1% deadtime for Supernova observation)

Det. performance for astrophysical ν
Sun Supernova

~1/10year SN



Summary
• Wide physics topics, many discovery potentials

• Proton decay discovery
• CPV (76% of δ space at 3σ), δ precision of <20o

• SN bursts, relic SN ν, WIMP annihilation ν ...

• Many good results in development works
• Cavity and support design
• Plastic liner
• 50cm high sensitivity photo-sensors
• Many rooms to contribute

• Boost promoting the project
• International proto-collaboration has been formed 
• Cooperation with KEK-IPNS/ICRR to develop the project
• Design Report to be prepared in 2015
• Open for new collaborators

29
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Hyper-Kamiokande EU meeting@CERN 

27-28 April 2015 
• Meeting to discuss the European effort in Hyper-K 
• Open to anyone who has interest in Hyper-K, or is planning to join Hyper-

K, or is contributing  
• http://indico.cern.ch/e/ThirdEUHyperK 

 


