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U.S. P5 Report

Recommendation 13: Form a new international
collaboration to design and execute a highly capable Long-
Baseline Neutrino Facility (LBNF) hosted by the U.S.

The minimum requirements to proceed are the identified
capability to reach an exposure of at least 120 kt*MW*yr by the
2035 timeframe, the far detector situated underground with
cavern space for expansion to at least 40 kt LAr fiducial
mass, and 1.2 MW beam power upgradable to multi-
megawatt power. The experiment should have the
demonstrated capability to search for supernova (SN) bursts
and for proton decay, providing a significant improvement in
discovery sensitivity over current searches for the proton
lifetime.
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European Strategy Document

f) Rapid progress in neutrino oscillation physics, with significant
European involvement, has established a strong scientific case
for a long-baseline neutrino programme exploring CP violation
and the mass hierarchy in the neutrino sector.

CERN should develop a neutrino programme to pave the
way for a substantial European role in future long-baseline
experiments. Europe should explore the possibility of
major participation in leading long-baseline neutrino
projects in the US and Japan.
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ELBNF and LBNF

ELBNF: An Experimental Program in Neutrino Physics,
Nucleon Decay, and Astroparticle Physics at the Fermilab
Long Baseline Neutrino Facility (LBNF)

A merger of previous efforts and any other interested parties to

build, operate, exploit

e a (staged) 40 kt LAr detector, at the Sanford Underground
Research Faclility (SURF), 1300 km from Fermilab

 a high granularity/high precision near detector

e exposed to a 1.2 MW, tunable, wide-band v beam produced
by the PIP-Il upgrade at FNAL by 2024, evolving to a power
of 2.4 MW by ~ 2030
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A 25+ year physics program

With the beam:

 Perform a comprehensive investigation of neutrino oscillations to:
— test CP violation in the lepton sector
— determine the ordering of the neutrino masses
— test the three-neutrino paradigm

 Perform a broad set of neutrino scattering measurements with the
near detector

Exploit the large, high-resolution, underground far detector for
non-accelerator physics topics:

e atmospheric neutrino measurements
o searches for nucleon decay

 measurement of astrophysical neutrinos (especially those from a
core-collapse supernova).
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Letter of Intent: Nucleation Point for New Collaboration

http://www.fnal.gov/directorate/program_planning/Jan2015Public/LOI-LBNF.pdf

An Experimental Program in Neutrino Physics,
Nucleon Decay, and Astroparticle Physics
Enabled by the Fermilab

Long-Baseline Neutrino Facility

Letter of Intent Submitted to the Fermilab PAC
P-1062

January 5, 2015

I < Fermilab|

An Experimental Program in Neutrino Physics,
Nucleon Decay, and Astroparticle Physics
Enabled by the Fermilab

Long-Baseline Neutrino Facility

Executive Summary

This is a Letter of Intent (LOI) by a global neutrino community te pursue an
accelerator-based long-baseline neutrino experiment, as well as neutrino
astrophysics and nucleon decay, with an approximately 40-kt (fiducial mass)
modular liquid argon TPC (LAr-TPC) detector located deep underground and a high-
resolution near detector. Several independent worldwide efforts, developed through
many years of detailed studies, have now converged around the opportunity
provided by the megawatt neutrino beam facility planned at Fermilab and by the
new significant expansion with improved access foreseen at the Sanford
Underground Research Facility in South Dakota, 1,300 km from Fermilab.

The principle goals of this experiment are to carry out a comprehensive
investigation of neutrino oscillations to test CP violation in the lepton sector, to
determine the ordering of the neutrino masses, and to test the three-neutrino
paradigm; to perform a broad set of neutrino scattering measurements with the
near detector; and to exploit the large, high-resolution, underground far detector for
non-accelerator physics topics, including atmospheric neutrino measurements,
searches for nucleon decay, and measurement of astrophysical neutrinos (especially
those from a core-collapse supernova).

The new international team has the necessary expertise, technical knowledge, and
critical mass to design and implement this exciting discovery experiment in a
relatively short timeframe. The goal is the deployment of the first 10-kt fiducial mass
detector on the timescale of 2021, followed by future expansion to the full detector
size as soon as possible. The PIP-1I accelerator upgrade at Fermilab will provide
1.2 MW of power by 2024 to drive a new neutrino beam line at Fermilab. There also
exists a plan that could further upgrade the Fermilab accelerator complex to enable
it to provide up to 2.4 MW of beam power by 2030. With the availability of space for
expansion and improved access at the Sanford laboratory, this international
collaboration will develop the necessary framework to design, build and operate a
world-class deep-underground neutrino and nucleon decay observatory. Fermilab
will act as the host laboratory. This plan is aligned with the European Strategy
Report and the US HEPAP Particle Physics Project Prioritization Panel (P5) report.
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ELBNF Collaboration

As of 27 Feb 2015 there were
527 signatures to the LOI

e They form the basis of the
new ELBNF collaboration

e Signers represent:
— 147 Institutions
— 68 US Institutions
— 79 non-US Institutions
— 24 Countries
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Countries represented:

Armenia, Belgium, Brazil,
Bulgaria, Canada, China,
Colombia, Czech Republic,
France, Germany, India, Iran,
Italy, Japan, Mexico,
Netherlands, Pakistan, Poland,
Russia, Spain, Switzerland,
Turkey, UK, USA
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Beam-based Neutrino Oscillations

3.1.1. Phenomenology

To first order, the oscillation probability of v, — v, through matter in a constant
density approximation is [1]:

sin®(Az;—al)
(A31—al)? =

P(v

L = Ve) = sin? 6,5sin? 26,4

sin(A3;1—al)
(Az1—al)

+ sin 26,5 sin 2645 sin 26, sy Smgl’) A, cos(As; + Ocp)

sin?(al)

(aL)?

+cos? 8,5 sin? 26, A3, (1)

where, 4;; = Am{;,L/4E,and a = GzN,/V2.

In the above, both Scp and a switch signs in going from the v,— ve to the v — Ve
channel; i.e, a neutrino-antineutrino asymmetry is introduced both by the CP-
violating phase, Ocp, and the matter effect, the origin of which is simply the presence
of electrons and absence of positrons in the Earth.
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Neutrino Spectra and Oscillation Probabilities
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FIGURE 1: The colored curves represent P(v,—» ve) at a baseline of 1300 km, as a
function of neutrino energy, for ocp = mw/2 (blue), 0 (red), and -m/2 (green), for
neutrinos (left) and antineutrinos (right), for normal hierarchy. The cyan curve
indicates the oscillation probability if €13 were equal to zero. The black solid histogram
Is the unoscillated v, (left) and v, (right) flux at 1300 km from an 80GeV MI beam

using NuMI horns for focusing.
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Expected Sensitivities to MH and CPV
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FIGURE 8: Expected sensitivity of ELBNF to determination of the neutrino mass
hierarchy (left) and discovery of CP violation, i.e. dcp =0 or m, (right) as a function of
exposure in kt-MW-years, assuming equal running in neutrino and antineutrino mode,
for a range of values for the residual ve and v. signal and background normalization
uncertainties. The sensitivities quoted are the minimum sensitivity for 100% of docp
values in the case of mass hierarchy and 50% of 6cp values in the case of CP violation.
Sensitivities are for true normal hierarchy; neutrino mass hierarchy is assumed to be"ab
11 unknown in the CPV fits.



Proton Decay: p > K*v
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FIGURE 10: The 90% CL lifetime limit for p - nu K+ as a function of time for a LArTPC.
The solid curve considers an initial exposure of 5 years by a 10-kton detector followed
by an additional 30-kton after the 5th year. For comparison a dashed line shows the
90% CL lifetime limit assuming all 40 ktons commences in year 5. rmilab
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Atmospheric Neutrinos
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FIGURE 11: Sensitivity to mass hierarchy using atmospheric neutrinos as a function of
the fiducial exposure in kt*years.
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Supernova Neutrinos
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FIGURE 13: Left: Expected time-dependent signal in 40 kt of liquid argon for a specific
flux model for an electron-capture supernova [19] at 10 kpc, calculated using
SNoWGLoBES [20]. Note the logarithmic binning in time; the plot shows the number of
events expected in the given bin for three detection channels and the error bars are
statistical. The vertical dashed line at 0.02 seconds indicates the time of core bounce,
and the vertical lines indicate different eras in the supernova evolution. The leftmost
time interval indicates the infall period. The next interval, from core bounce to 50 ms,
Is the neutronization burst era, in which the flux is composed primarily of ve. The next
period, from 50 to 200 ms, is the accretion period. The final era, from 0.2 to 9 seconds,
is the proto-neutron-star cooling period. Right: Expected measured event spectrum for milab

‘ the same model, integrated over time. > Marts



Far Detector: Single- or Dual-Phase LAr TPC

anode & charge readout

field cage

liquid argon
volume 4w

height
<
Modules of 50x50 cm?
multilayer PCB anode LEM Extracton grid
+3.125 mm readout pitth ~ * 500 pm holes, 800 pmpitch  + 100 pm stainiess wires

- 3.4 mm thick + 1 mm thick =R4 + 2mm pitch in x and v

FIGURE 15. Schematic view (left) of the 20-kt double-phase LAr detector optimized
for the Pyhdsalmi mine location. Engineering work is presently being performed to
optimize the geometry to a SURF location (right) the basic 4x4 m? double-phase
Cryogenics - cold box, buffer storage readout unit with their extraction, LEM amplifying stage, and anode layer. In total 65

such units of 4x4 m? will be needed for the 23.3-kt detector.
A i | IH

botlom of tank &
light 1eadout

Cryostat septum
LAr filtration system

Detector Module K
2 high x 3 wide x 18 long drift cells x 2 modules ---f‘{. T
216 APAs, 224 CPAs PPN Lty el
FIGURE 16. Schematic of a 34-kt fiducial mass LArTPC design (left). The detector J€ s
/ iz g el 3¢ Fermilab

comprises two 17-kt fiducial mass LArTPC detectors. The design of a pair of Anode
Plane Assemblies is shown at right.
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Cryostat Development

35 t membrane cryostat prototype 17 m3 membrane cryostat prototype
operational at FNAL under construction at CERN

e Learn construction methods e Learn construction methods

e Purity tests e Purity tests

* \Vessel for detector prototyping * Vessel for detector prototyping

8x8x8 m3
cryostat.design



Proposed Near Detector Designs
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Figure 8.4: Schematic layout of the LBNO ND.

e High-pressure GAr TPC
e ~3.5m % 3.5m x 7m STT (p=0.1gm/em’) Transition Radiation = e*/""ID =y
o 4m--ECAL in a Dipole--B---Field (0.4T) dE/dx 3 proton, i/ KH
® 4T---|i---Detector (RPC) in Dipole and Downstream
. Prcssuri;wdRr---lalgcl(ﬁxSFD---Swl]-» LArFD

Magnet/Muon Detector = u""" ot

( = Absolute Flux measurement)

FIGURE 17: Schematic of the Fine-Grained Tracker Near Detector, with straw-tube
tracker (STT), electromagnetic calorimeter (ECAL), large-aperture dipole magnet, and

resistive plate chamber (RPC) muon detectors. # Fe rm ilab
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Beamllne for a new Long-Baseline Neutrino Facility
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Target Hall and Decay Pipe Layout

Decay Pipe concrete
shielding (5.5 m)

Decay Pipe:
Diameter =4 m

Length = 200~250 m

Baffle/Target C I

19

Target Chase: 1.6 m/1.4 m wide, 24.3 m long

J.Strait | NeuTel 2015

Geomembrane barrier
system to keep
groundwater out of
decay region, target

chase and absorber hall
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Conventional Facilities Designs

Near Detector Hall and Surface Building

Absorber hall
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CN2PY v-beam optimisation

» Beam target and focusing system optimization using Genetic Algorithm

- Multi-variable analysis of horn/reflector parameters
- Optimization:
» use GLOBES to maximize the 3, sensitivity at the FD

» HE-optimization: maximum yield of v-s in the range [1-
» LE-optimization: maximum yield of v-s in the range [1-2] GeV

@ Engineering Department

Beam Optics
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POT normalization for SPS: 3.75E+20
POT normalization for HPPS: 3.0E+21

» New optimization for CDR, usin
additional engineering constraints:

- Ry horn ~27mm

- Same relative position horn/reflector for
400/50 GeV beams

- Target length <1.3 m

03-Nov-2014 16

21
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Apply LBNO-design low-energy beam (HPPS LE) to LBNF

~

‘Ee ol 1300km = e 120 GeV Perfect Focus ‘%e - 1300km 000 e 120 GeV Perfect Focus
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Beam

* Application of HPPS LE beam spectrum to LBNF baseline
-modestly improves CP violation reach
-improves minimum Ax? by ~x2 for MH
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PIP-1I: Beam power upgrade to 1.2 MW

* Development phase

— R&D program
supports 2018-2019
construction start

— Collaboration with
India

« Strong support from P5, -
U.S. DOE, and the
Fermilab Director

 Five year construction
period would support
operations startup in
2023
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Flexible Platform for the Future

e Opportunities for Booster replacement include full energy (8
GeV) linac or RCS => Beam power from Main Injector

>2 MW

- 300

b

2= Fermilab
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Sanford Underground Research Facility

Experimental facility operated by Yates Complex e Car e
the State of South Dakota.
Current experiments:

e LUX (dark matter)

e Majorana (0vfp)

e Several smaller experiments

Future home of:

. e LZ (G2 dark matter experiment)
“S°7) » CASPAR (Compact Accelerator
System for Astrophysical Research)

e LBNF

_____

2= Fermilab
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Sanford Underground Research Facility

Entrance to Davis Campus

. | Majorana Demonstrator (Ovpp)

e Experimental Facilities at 4300 mwe LUX (dark matter)

* Two vertical access shafts for safety |

» Shaft refurbishment in process and has s
reached the 2000 foot level

e Total investment in underground
infrastructure is >5100M

* Facility donated to the State of South
Dakota for science in perpetuity
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Planned Location of LBNF Cavern(s)

(Previous) reference* design:

e Rectangular caverns

e 2 caverns: 10 kt + 30 kt fiducial mass sizes

e 10 kt cavern fully outfitted and detector-ready

e 30 kt cavern excavated only
& 4850 Level (4300 mwe)

1/BUS SSOY]

LZ
LUX/ZEPLIN
Second generation dark matter

R&D opportunities

s Campus —
4pp"°:ri
g ”’a@y Tion
arge Underground Xenon Laboratory b,

Fira generation dark matter Mﬂen W

+ MJD

MaJorana DEMONSTRATOR

Jeus sel

Neutrinoless double-beta decay

+ CUBED
Center for Ultra-Low Background Experiments in the Dakotas
Low-background counting

* BLBF

Berkeley Low Background Facility

Low-background counting
* Actual design is evolving based ROSSM M
on strategy and requirements set in fmrueme

discussion with ELBNF Collaboration
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Proposed Laboratories

- Experiment Hall

Third generation dark matter and/or
1 T neutrinoless double-beta decay

« LBNF

Long-Baseline Neutrino Facility
4850 Level 10 kT and 30 KT liquid argon

+ BHSU Underground Campus

Low-Background Counting

R&D opportunities

«CASPAR
Compact Accelerator System
for Performing Astrophysical Research

2= Fermilab
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Cavern Layout Options Under Study

Based on use of four identical
cryostats, designed to
accommodate either single- or
dual-phase LAr TPC detectors.
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Schedule

Schedule Goals set in the LOI

The new international team has the necessary expertise, technical knowledge, and
critical mass to design and implement this exciting discovery experiment in a
relatively short timeframe. The goal is the deployment of the first 10-kt fiducial mass
detector on the timescale of 2021, followed by future expansion to the full detector
size as soon as possible. The PIP-II accelerator upgrade at Fermilab will provide
1.2 MW of power by 2024 to drive a new neutrino beam line at Fermilab. There also
exists a plan that could further upgrade the Fermilab accelerator complex to enable
it to provide up to 2.4 MW of beam power by 2030.

» A project plan is being developed to try to meet them as closely as
possible, subject to both on technical limitations and funding.

* Break the project into pieces which can be implemented in a sequence
determined by the scientific strategy:
— Far detector in 10 kt fiducial mass modules
— Neutrino Beam
— Near Detector

2= Fermilab

29 J.Strait | NeuTel 2015 5 Mar 15



International Governance of ELBNF and LBNF

 ELBNF will follow a model derived from the CERN LHC,
which clearly separates the ownership of the experiment
(International Collaboration -- ELBNF) from the ownership of
the facility (Host Lab with international partners -- LBNF)

o Collaboration and Host Lab rights and obligation are
regulated by MOUs

e Astrong Experiment - Facility Interface Group (EFIG) is key.

* Interim EFIG has been formed with representatives of the
experiment appointed by the proto-Institutional Board and
representatives of the facility project.

 DOE is engaged with other funding agencies interested in
participating in and supporting this program to fully develop
the governance model.

2= Fermilab
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Organizing the Collaboration

« First collaboration meeting 22-23 January
— First IB meeting held

— Agreed on Memorandum of Collaboration which specifies
procedures by which the collaboration starts to organize

 Committee to draft by-laws is at work
o Spokesperson election is under way — results on 7 March

e Collaboration naming “contest” under way — ballot closed
yesterday.

 Weekly collaboration meetings by phone; monthly IB meetings.
« Next full collaboration meeting 16-18 April at Fermilab.

2= Fermilab
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DOE Reviews

DOE is very supportive of the aggressive schedule goals
o Excavation of the caverns for the far detector starting in 2017
 Initial 10 kt detector operating as soon as possible.

To support the funding required, DOE has called for a “CD-1 Refresh”
review in July for the whole LBNF + ELBNF enterprise...

 New /updated CDR and other technical documents incorporating
designs and alternatives from all (E)LBNF partners.

New / updated cost and schedule estimates.
New / updated management plans and related documents

... and a CD-2a/3a review in November for the far site facilities.
CD-2a: Project baseline (TDR-level) for this part of the project.

CD-3a: Authorization to begin construction at the far site when
funds become available.

2= Fermilab
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Summary

 Anew global collaboration has formed to perform an experimental
program in neutrino physics, nucleon decay, and astroparticle physics at
the Fermilab Long Baseline Neutrino Facility (LBNF).

* The collaboration organization is taking shape rapidly.

 The experiment and facility designs are being developed, incorporating
Ideas and designs developed by all collaborators.

 The goal is to enable the operation of an initial 10 kt far detector in ~2021
and provide a clear path to the full ELBNF experiment soon thereatfter.

 DOE is fully supportive of this goal and is working with other funding
agencies to gather the necessary resources.

* The next months will be crucial
— Forming the ELBNF collaboration and LBNF project
— Defining the international governance

— Preparing for and passing the DOE “CD-1 refresh” and CD-2a/3a
reviews.
3¢ Fermilab
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