

Weak interference between the 1 $^-$ states in the vicinity of $\alpha\text{-particle threshold of}\ ^{16}\text{O}$

M. Katsuma a,b

The subthreshold 1^-_1 state at an excitation energy $E_x=7.12$ MeV in $^{16}{\rm O}$ has been believed to enhance the astrophysical S-factor for $^{12}{\rm C}(\alpha,\gamma_0)^{16}{\rm O}$. The enhancement seems to originate from strong interference between 1^-_1 and 1^-_2 ($E_x\approx 9.6$ MeV) in the vicinity of the α -particle threshold. However, the weak interference between two states and a resulting small E1 S-factor are exemplified with R-matrix theory in this presentation. In my previous reports [1], I have predicted the small E1 S-factor at $E_{c.m.}=300$ keV from the potential model, because non-absorptive scattering results in weak coupling between shell and cluster structure in $^{16}{\rm O}$. In the present example, I utilize the previous results to estimate the reduced α -particle width of 1^-_1 and 1^-_2 . In addition, the formal parameters in R-matrix are obtained from an exact expression, including a higher-order correction, because it has been reported that the resonance parameters for 1^-_2 are not appropriately treated in the linear approximation. This correction ensures that the R-matrix calculation corresponds to the experimental data.

In the calculation [2], a large energy shift for the pole of 1_2^- is expected from the α + 12 C cluster structure in 16 O. The resultant energy of the 1_2^- pole is found to be located in the vicinity of 1_1^- . This proximity of the poles suppresses their interference, and it consequently makes the small E1 S-factor below the barrier (Figure 1). The corresponding results of the β -delayed α -particle spectrum of 16 N and the calculated p-wave phase

shift of α + 12 C elastic scattering are consistent with the previous experimental results. The experimental α -particle width of 1_2^- is also reproduced by the present example. It would therefore be possible in the R-matrix method that the E1 S-factor is reduced from the enhanced value currently expected. At the same time, the reaction rates of 12 C(α , γ) 16 O are expected to be obtained from the direct-capture component, rather than compound nucleus mechanisms.

Figure 1. An example of the R-matrix calculation of E1 S-factor for 12 C(α, γ_0) 16 O.

References

- M. Katsuma, Proc. Nuclei in the Cosmos XIV, JPS Conf. Proc. 14 (2017) 021009;
 M. Katsuma, Phys. Rev. C 78, 034606 (2008); ibid. 81 (2010) 067603; Astrophys. J. 745 (2012) 192; PoS(NIC XIII) (2015) 106.
- [2] M. Katsuma, arXiv:1701.02848 [nucl-th].

^a Advanced Mathematical Institute, Osaka City University, Japan

^b Institut d'Astronomie et d'Astrophysique, Université Libre de Bruxelles, Belgium