A collimation system for ELI-NP Gamma Beam System – design and simulation of performance

```
G. Paternò<sup>(1)</sup>, P. Cardarelli <sup>(1)</sup>, M. Marziani<sup>(1)</sup>, E. Bagli<sup>(1)</sup>, F. Evangelisti <sup>(1)</sup>, M. Andreotti<sup>(1)</sup>, M. Gambaccini<sup>(1)</sup>, V. Petrillo <sup>(2)</sup>, I. Debrot<sup>(2)</sup>, A. Bacci<sup>(2)</sup>, C. Vaccarezza <sup>(3)</sup>, A. Variola <sup>(3)</sup>, L. Palumbo<sup>(4)</sup>
```

(1) INFN - Ferrara, (2) INFN - Milano, (3) INFN - LNF, (4) Università La Sapienza - Roma

Channeling 2016, Desenzano del Garda, 29 September 2016

EuroGammaS

The Extreme Light Infrastructure – ELI Project

ELI is a **European Project**, involving nearly 40 research and academic institutions from 13 EU Members Countries, forming a pan-European facility, that aims to host frontier **high-power lasers**, as well as various **radiation beamlines** (electrons, protons, X-rays and gamma rays) for different applications.

- ELI-Nuclear Physics (Bucharest, Romania): dedicated to the development of PW laser beams and the generation of intense gamma beams for frontier research in nuclear physics.
- **ELI-Beamlines** (Prague, Czech Republic) highly competitive source of extremely short pulse X-rays, accelerated electrons, or protons for applications (also biomedical).
- ELI-Attosecond (Szeged, Hungary) ultrafast light sources (coherent XUV and X-ray radiation) including single attosecond pulses, to investigate electron dynamics in atoms, molecules, plasmas and solids.

EuroGammaS for ELI-NP Gamma Beam System

One of the goals of the ELI-NP infrastructure is the production of a gamma beam (ELI-NP-GBS) using Inverse Compton Scattering of laser light from an accelerated electron beam for nuclear physics experiments.

- The produced gamma beam is expected to have:
- Energy tunable in the interval between **0.2 MeV and 20 MeV**,
- Energy bandwidth ΔE/E < 0.5%,
- About 10⁸ photons per second within FWHM.
- EuroGammaS association is composed by INFN, as leader, the Università degli Studi di Roma "La Sapienza", CNRS, ACP S.A.S., Alsyom S.A.S., Comeb Srl, ScandiNova Systems AB.
- EuroGammaS will provide the design, manufacturing, delivery, installation, testing, commissioning and maintenance of the Gamma Beam System (GBS), for the benefit of the ELI-NP project, managed by the Horia Hulubei National Institute for Physics and Nuclear Engineering Bucharest Magurele, ROMANIA.

EuroGammaS

http://www.e-gammas.com

ELI-NP Gamma Beam System parameter list

Table 63. Gamma-ray beam for 3 selected collision examples (from Start-to-end simulations)

all quantities are rms	Low Energy Interaction	Low Energy Interaction	High Energy Interaction	High Energy Interaction
Energy (MeV)	2.00	3.45	9.87	19.5
Spectral Density (ph/sec.eV)	39,760	21,840	16,860	8,400
Bandwidth (%)	0.5	0.5	0.5	0.5
# photons per shot within FWHM	1.2 ⁻ 10 ⁵	1.1 [.] 10 ⁵	2.6 ⁻ 10 ⁵	2.5 [.] 10 ⁵
# photons/sec within FWHM	4.0 ⁻ 10 ⁸	3.7 ⁻ 10 ⁸	8.3 ⁻ 10 ⁸	8.1·10 ⁸
Source rms size (µm)	12	11	11	10
Source rms divergence (µrad)	140	100	50	40
Peak Brilliance (N _{ph} /sec mm ² mrad ² 0.1%)	9.1·10 ²¹	1.9 [.] 10 ²²	1.8 [.] 10 ²³	3.3·10 ²³
Average Brilliance (N _{ph} /sec mm ² mrad ² 0.1%)	2.9·10 ¹³	6.2·10 ¹³	5.9·10 ¹⁴	1.1·10 ¹⁵
Rad. pulse length (rms, psec)	0.92	0.91	0.95	0.9
Linear Polarization (%)	> 99.8	> 99.8	> 99.8	> 99.8
Macro rep. rate (Hz)	100	100	100	100
# of pulses per macropulse	32	32	32	32
Pulse-to-pulse sep. (nsec)	16	16	16	16
Contrast ratio 1 st / 2 nd harmonic	1.5 ⁻ 10 ⁵	8.5 ⁻ 10 ⁴	7.0 ⁻ 10 ⁴	4.4 ⁻ 10 ⁴
Luminosity @ (1,0.5) psec delay	(94,99) %	(92,98) %	(91,98) %	(85,96) %
Lumin. @ (5,2) µm misalignment	(98,99) %	(96,99) %	(90,97) %	(87,95) %

Gamma beam specifications

Photon energy	0.2-19.5 <i>MeV</i>
Spectral Density	0.8-4 ⁻ 10 ⁴ ph/sec.eV
Bandwidth (rms)	≤ 0.5%
# photons per shot within FWHM bdw.	$\leq 2.6 \cdot 10^5$
# photons/sec within FWHM bdw.	≤ 8.3·10 ⁸
Source rms size	10 - 30 <i>μ</i> m
Source rms divergence	25 - 200 <i>μ</i> rad
Peak Brilliance (N _{ph} /sec mm²mrad².0.1%)	10 ²⁰ - 10 ²³
Radiation pulse length (rms, psec)	0.7 - 1.5
Linear Polarization	> 99 %
Macro rep. rate	100 Hz
# of pulses per macropulse	≤ 32
Pulse-to-pulse separation	16 <i>nsec</i>

Technical Design Report

EuroGammaS proposal for the ELI-NP Gamma beam System
With 73 tables and 230 figures

O. Adriani, S. Albergo, D. Alesini, M. Anania, D. Angal-Kalinin, P. Antici, A. Bacci, R. Bedogni, M. Bellaveglia, C. Biscari, N. Bliss, R. Boni, M. Boscolo, F. Broggi, P. Cardarelli, K. Cassou, M. Castellano, L. Catani, I. Chaikovska, E. Chiadroni, R. Chiche, A. Cianchi, J. Clarke, A. Clozza, M. Coppola, A. Courjaud, C. Curatolo, O. Dadoun, N. Delerue, C. De Martinis, G. Di Domenico, E. Di Pasquale, G. Di Pirro, A. Drago, F. Druon, K. Dupraz, F. Egal, A. Esposito, F. Falcoz, B. Fell, M. Ferrario, L. Ficcadenti, P. Fichot, A. Gallo, M. Gambaccini, G. Gatti, P. Georges, A. Ghigo, A. Goulden, G. Graziani, D. Guibout, O. Guilbaud, M. Hanna, J. Herbert, T. Hovsepian, E. Iarocci, P. Iorio, S. Jamison, S. Kazamias, F. Labaye, L. Lancia, F. Marcellini, A. Martens, C. Maroli, B. Martlew, M. Marziani, G. Mazzitelli, P. McIntosh, M. Migliorati, A. Mostacci, A. Mueller, V. Nardone, E. Pace, D. T. Palmer, L. Palumbo, A. Pelorosso, F.X. Perin, G. Passaleva, L. Pellegrino, V. Petrillo, M. Pittman, G. Riboulet, R. Ricci, C. Ronsivalle, D. Ros, A. Rossi, L. Serafini, M. Serio, F. Sgamma, R. Smith, S. Smith, V. Soskov, B. Spataro, M. Statera, A. Stecchi, A. Stella, A. Stocchi, S. Tocci, P. Tomassini, S. Tomassini, A. Tricomi, C. Vaccarezza, A. Variola, M. Veltri, S. Vescovi, F. Villa, F. Wang, E. Yildiz, F. Zomer

Inverse Compton Scattering

Inverse Compton Scattering

- Inverse Compton radiation is not intrinsically monochromatic, the energy is related to the emission angle.
- The required energy bandwidth can be obtained by properly collimating the gamma beam.

Effect of collimation

EuroGammas collimation system

To obtain an energy bandwidth < 0.5 % at 0.2 - 20 MeV collimation apertures that varies from about 14 mm to 1 mm, demanding a very challenging design.

Main requirements are:

- Low transmission of gamma photons (high density and atomic number material (vacuum compatible))
- Continuously adjustable aperture (to adjust the energy bandwidth in the entire energy range)
- Avoid contamination of the primary beam with production of secondary radiation

- Collimation system in a vacuum chamber.
- A mechanical device provide **fine adjustment** in X , Y , θ (pitch) and Φ (yaw).

EuroGammas collimation system

- Stack of 14 slits with aperture independently adjustable (0-25 mm) mounted on a high precision frame.
- Each slit composed of 2 **40 x 40 x 20** mm blocks made of a **97% W** alloy (2% Ni, 1% Fe) with roughness < 5 μ m.
- 3 groups of 4 slits each with a relative rotation of 45° around the beam axis.

Collimation system - Monte Carlo simulations

- To evaluate the collimation system performance a set of Monte Carlo simulations has been carried out.
- A dedicated Geant4 application has been developed.

A complete geometry has been implemented. It includes:

- walls, floor and roof,
- girders, pedestals and magnets,
- pipe and shielding block,
- a detailed model of the collimation chamber and Compton spectrometer.

Collimation System - Monte Carlo Simulations

- The primary gamma radiation were obtained by transporting a realistic electron beam to the IP and then simulating⁽¹⁾, through the **CAIN** code, the collision with the laser (**EuroGammaS WP02 Petrillo**).
- The radiation produced at the IP is then used as an input for Geant4 simulations.
- Gamma beams simulated:
 - **LE**: 0.2, 1, 2, 2.5, 3, 3.5 MeV
 - **HE**: 5, 5.8, 10, 13, 18.6, 19.5 MeV

Implementation details:

- Physics lists:
 - G4EmStandardPhysics_option4
 - G4HadronPhysicsQGSP_BIC_HP and for G4HadronElasticPhysicsHP
- Cuts set to 1 µm for all the volumes
- Scoring performed by using:
 - Sensitive detectors
 - G4VPrimitiveScorers
 - UserAction classes

(1) Laser pulse energy 0.2 J for LE IP and 0.4 J for HE IP (Table 60 TDR). For all simulations the electron charge per pulse is 250 pC.

Collimation System - Expected performance

- A set of simulations to evaluate the energy distribution as a function of the collimation aperture was carried out for all the beams previously listed.
- The scoring was performed inside the vacuum pipe at the exit of the concrete shielding block.
- The results of simulations are compatible with the results of a **mathematical collimation** of the input beam $(\theta < \theta_{cut})$.

Collimated Beam Spectrum @ 3 MeV

Collimation System - Expected performance

$$\frac{\Delta E}{E} = \sqrt{\Psi^4 + \left(\frac{\Delta \gamma_e}{\gamma_e}\right)^2 + \left(\frac{\Delta \varepsilon_n}{\sigma_x}\right)^2 + \left(\frac{\Delta \omega_L}{\sigma_x}\right)^2 + \left(\frac{M^2 \lambda_L}{2\pi w_0}\right)^4 + \left(\frac{a_0^2/3}{1 + a_0^2/2}\right)^2}$$

$$N = L\sigma_{th} = \frac{7.4 \times 10^9 U_L[J]Q[pC]\Psi^2 f}{h v_L[eV](w_0^2 + 2\sigma_X^2) \sqrt{1 + (\sigma_z \delta/(4\sigma_x))^2}}$$
acceptance electrons

Collimation System - Slit misalignment

- The effect of slit misalignment with respect to the beam axis was evaluated.
- A random misplacement with Gaussian distribution of increasing sigma (50 μ m -> 500 μ m) was applied to each tungsten edge.
- The results show that the effect of this misplacement is negligible up to 100 μm (expected 20 μm) and in any case results in a flux and a slight bandwidth reduction.
 No penumbra effects -> no bandwidth degradation emerges.
- The effect is much more relevant for HE beams.

Slit random misalignment @ 3 MeV

Slit random misalignment @ 18.6 MeV

Collimation System - Chamber misalignment

- The effect the collimation chamber misalignment was also evaluated.
- The chamber was rotated on its center with respect to the beam axis by increasing angles, up to 1 mrad (expected 0.1 mrad).
- Misalignment causes a reduction of the flux and the effect is more relevant at HE.

Background evaluation

Flux of particles and dose evaluated in various regions of interest.

- Background radiation @10 MeV 20000 18000 3000 16000 200 2000 14000 E 1000 Counts 12000 Counts 10000 8000 50 -1000 6000 -6000 -4000 -2000 2000 4000 x (mm) 5000x10000 mm 50x100 bins 2000 Bin size: 10x10 cm² 2 Energy (MeV)
- Our simulations have been mainly aimed ad evaluating the signal and the background on the detectors downstream of the collimator.
- In the ideal case, there are **no particles in the region downstream of the concrete block** (outside of the pipe).
- Simulations of high-statistic background on the Ge detector of CSPEC as a function of misalignments ongoing.

Dose to racks

rack	E (MeV) Dose rate in air (Gy/s)		
1	3	4.95E-10	
1	10	3.03E-11	
1	18.6	3.61E-09	
2	3	2.48E-10	
2	10 1.46E-11		
2	18.6	3.40E-09	

At higher energies, racks receive an higher irradiation, mainly due to low-energy scattered photons and neutrons ->

Evaluation of shielding requirement ongoing

Conclusions

- An overview of the **design and simulation of the collimation system** for ELI-NP-GBS has been presented.
- The results of the simulations show that the **designed collimation system** allows to obtain monochromatic beams with an energy distribution compatible to the parameters required ($\Delta E/E < 0.5 \%$).
- The study of the effect of misalignments was fundamental to define the tolerances required to finalize the mechanical engineering and realization of the system (on going).
- The **simulation of realistic collimated beams** was necessary to evaluate the expected **performance of the detectors** composing the characterization system downstream of the collimator and to finalize their design.

Backup slides

Collimation effect

Collimated Beam Spectrum @ 10 MeV

Collimation System - Expected performance

Aperture of the slit at the collimator centre -> conical profile foreseen

E (MeV)	A1-A4 (mm)	A5-A8 (mm)	A9-A12 (mm)	A13-A14 (mm)
3	3.53	3.53+0.022	3.53+0.044	3.53+0.100
10	1.69	1.69+0.012	1.69+0.024	1.69+0.100
18.6	1.25	1.25+0.009	1.25+0.018	1.25+0.100

EuroGammas collimation system – previous solution

MC simulations – previous geometry (MCNPX)

Slit misalignment

Collimated beam footprint @ 18.6 MeV

Perfectly aligned slits

Slits misaligned, $\sigma = 100 \mu m$

Effect of windows isolating our pipe vacuum

- 3 different material considered: Al, Be and Kapton of increasing thickness (0.2 - 10 mm).
- the effect is an attenuation of the collimated beam (6% for 3 mm of Al windows) and an increase of photons scattered at large angles.

0.2 MeV beam, 3 mm Al windows

Gamma Beam Characterisation

The characterization of the gamma beam includes **the measurement** of:

- Average energy oh the photons
- Energy distribution, energy bandwidth
- Beam intensity, number of produced photons
- Spatial distribution, profile shape

Gamma Beam Characterisation

- A set of various detectors is needed to perform a full characterization of the gamma beam
- The definition of the solutions and detectors is complete, the realization of the final design is currently ongoing

Energy Distribution Measurement

- Time structure and high number of photons per pulse (10⁵ photons, 1 ps duration)
 - -> do not allow to use traditional spectrometry techniques
- It is not possible to disentangle the detector response to each single photon within a pulse

Two possible solutions:

- Measure the energy of 1 photon in average per each Macro-pulse (time-integrated energy spectrum)
- Obtain average energy and number of photon by measuring the total energy of all gamma photons for each pulse

Energy Distribution Measurement

Compton Scattering Spectrometer

high-precision measurements of **single** Compton scattering from thin target, Integration over time (about 100 s) -> **energy distribution evaluation**

Absorption Calorimeter

calorimetric, **total absorption** technique

Fast detectors, pulse-to-pulse detection -> **average flux and average energy**

Nuclear Resonant Scattering calibration system

high-precision energy measurement for selected energy values (integration time about 100 s) -> **absolute energy calibration**

Compton Spectrometer - Concept

- Reconstruct the beam energy spectrum by sampling Compton interactions of single gamma in a ultra-thin target
- Measuring the energy and position of the scattered electron, is possible to reconstruct the energy of the interacting gamma photon:

$$E_{gamma} = \frac{m_e T_e}{\cos \phi \sqrt{T_e (T_e + 2m_e) - T_e}}$$

$$N_{eMP} = N_{\gamma MP} \sigma_C \alpha \rho N_A \frac{Z}{A} t \approx 1$$

$$N_{\gamma MP} \approx 3.2 \times 10^6 \quad \sigma_C \approx 150 - 30 mb \quad \alpha \approx 1\%$$

$$\rho N_A \frac{Z}{A} \approx 7 \times 10^{23} cm^{-3} \Rightarrow t \approx 2 - 10 \mu m$$

M13/M30 - CSPEC

M13/M30 - CSPEC

Geant4 model of CSPEC

M13/M30 - CSPEC

