Cluster counting report

SuperB La Biodola meeting

May 31st 2011

Marcello Piccolo

The menu

- Quick reminder of the expt'l setup
- Quick reminder of the threshold algorithm
- A novel low rearming time algorithm
 - Comparisons on counting and fakes
- Test Beam run (and regrets)
- Conclusions

Expt'l apparatus

- Most of the data shown come from a continuous cathode square section device 17 mm. side.
 - Shown a first glance to different gas mixes during the April coll.
 Meeting
 - Concentrate on 90/10 (He/Isob) mix.
 - Try to elaborate a strategy to improve the cluster finding efficiency
- Most of the data were collected with a Sr⁹⁰ source
 - Trigger with a scintillation counter (4 cm thick)
 - good separation between 2 MeV electrons and cosmic rays
 - Overall efficiency ~ 20%

Ways to count spikes

The hardware differentiator was discussed in April, so I will concentrate on software algorithms applied to the full recorded waveform.

the first method, already reported is based on a threshold applied to single (sca) channel, referred to a locally evaluated baseline.

we developed a different method, based on conditions applied to the (local) slew rate.

Please remember: all of this is work in progress not an established algorithm.

A typical pulse (showing the cut variable for the threshold method)

Limitations of the threshold method

- The threshold method is inherently uni-polar, so it does present a non negligible dead time, as it works on a sort of differentiation (local baseline subtraction).
- Furthermore the background hits the method finds, sets a limit to the threshold one is able to impose.
- On the bright side, the methods has built in a rejection against the high multiplicity clusters (responsible for Landau tail)

Now the slew rate method

Here we again build a locally subtracted amplitude $VS_i = V_i - (V_{i-1} + V_{i-2} + V_{i-3})/3$.

- We evaluate differences for VS between ith, i^{th-1} and i^{th-2} and require each
 of them be greater than a cut value.
- Dead time here is imposed from outside as, for this method, the rearming time is just the SCA granularity.

Performances for cluster counting

Number of clusters vs cut variable value At different dead times

Number of clusters vs threshold

What about fakes?

What about fakes? (cont.)

11 nsec. Dead time

Pulse shapes and Cluster Counting

Event #5 upper threshold meth. Lower slew rate Dead time 6 nsec.

Event #5 upper, threshold meth. Lower slew rate Dead time 10 nsec.

Let's look at distributions width

Looking to the 10 events averages

Test beam

- We had an assigned week for the BTF
 - This is a Linac line capable of delivering from single particles to 10⁹ electrons in a 7 m length hall.
 - Given the situation with the long proto (no electronics/HV commissioning was carried out yet) we brought proto 1 and the 17 mm brass tube.
 - ...and all the paraphernalia needed (a small truck worth)
 - As you might imagine, the setting up of the apparatus from scratch took a couple of days of hard work
 - In order to comply with the faster rate coming form the test beam a completely new DAQ software was developed and commissioned (Riccardo de Sangro)

Test beam (cont.)

 We set up everything and started to monitor the beam quality:

Test beam (cont.)

 So we started to look at our detectors which had been gas/HV/electronics/DAQ commissioned

Test beam (cont.)

- So we were inches away to start data taking, when the Linac thermionic cathode gave in.
- A stop of at least 2 weeks (might be more than 10 weeks)
- Next attempt (if cathode allows) beginning of October.
- For sure by then the long proto will be on line.

Conclusions

- Even if we would have liked to have more answers, I believe that some progress has been achieved:
 - A new scheme for cluster counting has been implemented.
 - The behavior of this algorithm does resemble simulation results.
 - A completely new DAQ system was commissioned for the test beam and will be used in the next cosmic runs with the long proto.
- Stay tuned, more results will be available shortly