$\overline{^{15}}$ N(lpha, γ) 19 F measurement for 19 F production in AGB stars J.W. Frost-Schenk^a, A. Lennarz^b, D. Bardayan^c, D. Blankstein^c, D. Connolly^b, B.Davids^b, C.Aa. Diget^a, S. Fox^a, S.A. Gillespie^b, D. Golton^a, U. Greife^d, M.R. Hall^c, D. Hutcheon^b, J. Karpesky^d, A. Laird^a, J. Liang^e, M. Lovely^d, P. Machule^b, A. Psaltis^e, C. Ruiz^b and M. Williams^{ab}. ^aUniversity of York, UK, ^bTRIUMF, BC, CA ^cUniversity of Notre Dame, IN, USA ^dColorado School of Mines, CO, USA, ^eMcMaster University, ON, CA. 15 N(α , γ) 19 F is known to be one of the key formation mechanisms of 19 F in AGB stars [?]. 19 F may also be produced through this reaction in other stars such as Wolf-Rayet stars [?]. The 19 F abundance observed in the stellar spectra strongly depends on the conditions in the astrophysical site. Its nucleosynthetic origin has been debated for several decades, however the understanding of the 15 N(α , γ) 19 F reaction rate within the Gamow window at 200 MK for AGB stars is incomplete. Discrepancies in strength and energy exist between previous measurements in one of the key resonances, at $E_{c.m.}$ =1.323 MeV. Furthermore, the direct-capture, non-resonant cross-section has never been directly measured. The DRAGON recoil separator at TRIUMF was utilised to perform an inverse kinematics measurement of the 15 N(α,γ) 19 F reaction. Recoiling 19 F nuclei leaving the windowless helium gas target were separated using DRAGON's electromagnetic mass separator and detected in a DSSSD. Emitted gamma-rays from the de-excitation of the compound nucleus were detected in a BGO array surrounding the target and used for a coincidence analysis. We have measured the strength and energy of the $E_{c.m.}$ =1.323 MeV resonance in the 15 N(α,γ) 19 F reaction as well as the direct-capture cross section down to an energy of E_{c.m.}=0.96 MeV. The 2017 ERNA measurement by Di Leva et al. [?] was the first time ${}^{15}N(\alpha,\gamma){}^{19}F$ was measured in inverse kinematics; two strong reference resonances were measured. This measurement at DRAGON is the second inverse kinematics measurement. Our new measurement of the $E_{c.m.}$ =1.323 MeV resonance will help in solving the existing discrepancies regarding its strength, and provides an independent measurement of its energy, as well as the first measurement of the direct-capture contribution in the low-energy regime. This measurement will reduce uncertainties in 15 N(α,γ) 19 F reaction rate, especially in the direct-capture component where no previous measurements exist, thus helping to refine our understanding of AGB models and ¹⁹F production. ## References - [1] O. Staneiro et al., The Astrophysical Journal. **785** (2014) 77. - [2] G. Meynet and M.Arnould, A& A. **335** (2000) 176. - [3] A. Di Leva et al., Phys. Rev. C. 95 (2017) 045803.