(Two loop) Four dimensional formulation of dimensionally regularized amplitudes in quantum chromodynamics

Angelo Raffaele Fazio

Departamento de Física, Universidad Nacional de Colombia, sede Bogotà

Main reference

The talk is based on the article

C. Gnendiger, A. Signer, D. Stockinger, A. Broggio, A. L. Cherchiglia, F. Driencourt-Mangin, A. R. Fazio, B. Hiller, P. Mastrolia, T. Peraro, R. Pittau, G. M. Pruna, G. Rodrigo, M. Sampaio, G. Sborlini, W. J. Torres Bobadilla, F. Tramontano, Y. Ulrich, A. Visconti

"To d, or not to d: Recent developments and comparisons of regularization schemes"

arXiv:1705.01827

Eur.Phys.J. C77 (2017) no.7, 471

Quantum loop corrections

• Loop diagrams could be divergent

$$\int \frac{d^4k}{(2\pi)^4} \frac{1}{(k^2)^2} = \pi^2 \int_0^\infty dk^2 \frac{1}{k^2} = \pi^2 \int_0^\infty \frac{dx}{x}$$

This integral diverges at

- $k^2 \to \infty$ (UV divergence) and at
- $k^2 \to 0$ (IR divergence).

Dimensional regularization

In dimensional regularization

$$\int \frac{d^4k}{(2\pi)^4} \to \mu_{\rm DS}^{4-d} \int \frac{d^dk}{(2\pi)^d}$$

Example

$$\int d^d k \frac{1}{(k^2)^2} = \frac{\pi^{\frac{d}{2}}}{\Gamma(\frac{d}{2})} \int_0^\infty dk^2 (k^2)^{\frac{d}{2} - 3}$$

The continuation from 4 to $d = 4 - 2\epsilon$ dimensions makes all momentum integrals well defined and UV and IR singularities appear in the Laurent expansion of meromorphic functions as $\frac{1}{\epsilon^n}$ poles.

Physical cross section at Next-to-Leading Order

$$\sigma = \sigma_V + \sigma_R = \int d\Phi_V |M_V|^2 + \int d\Phi_R |M_R|^2$$

By choosing a complete dimensional scheme (DS)

$$\sigma^{DS} = \underbrace{\int d\Phi_V |M_V(\dots, [g], \dots)|^2}_{\frac{a}{\epsilon^2} + \frac{b}{\epsilon} + c + d\epsilon + e\epsilon^2 + \dots} + \underbrace{\int d\Phi_R |M_R(\dots, [g], \dots)|^2}_{-\frac{a}{\epsilon^2} - \frac{b}{\epsilon} + l + m\epsilon + n\epsilon^2 + \dots}$$
$$= \sigma_{\text{finite}} + \epsilon \sigma_1 + \epsilon^2 \sigma_2 + \dots$$

The physical cross section is

$$\sigma = \lim_{\epsilon \to 0} \sigma^{DS} = \sigma_{\text{finite}}.$$

- A different (but consistent) treatment of the gluon metric in the amplitude will modify the scheme dependence in the virtual and real contribution, keeping however the physical cross-section invariant.
- (\Longrightarrow) The purely d-dim. treatment of all objects is conceptually simpler, but it breaks supersymmetry and gives ambiguities $\text{Tr}(\gamma_5 \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\tau})$ with chiral symmetries.
- The 4-dim. treatment of the gluons is better compatible with supersymmetry and it is more amenable to helicity methods

$$A_{\text{MHV}}(1^+, \dots, i^-, \dots, j^-, \dots, n^+) =$$

$$i(-g)^{n-2} \frac{\langle ij \rangle^4}{\langle 12 \rangle \langle 23 \rangle \dots \langle n1 \rangle}$$

Parke-Taylor formula for Maximally Helicity Violating amplitudes.

Schemes

To treat the different schemes in a single framework we distinguish three vector spaces:

- the original four dimensional space (4S) with metric tensor $g_{[4]}^{\mu\nu}$,
- the "quasi- d- dimensional" space $(QS_{[d]})$ with metric tensor $g_{[d]}^{\mu\nu}$,
- the "quasi- d_s dimensional" space $(QS_{[d_s]})$ with metric tensor $g_{[d_s]}^{\mu\nu}$.

The "quasi-dimensionalities" of those infinite dimensional spaces are related by

$$d_s = d + n_{\epsilon} = 4 - 2\epsilon + n_{\epsilon}$$
$$QS_{[d_s]} = QS_{[d]} \oplus QS_{[n_{\epsilon}]} \quad S_4 \subset QS_{[d]} \subset QS_{[d_s]}.$$

Schemes

Only gluons that appear inside a divergent loop or phase space integral need to be regularized, they are **singular** all others are **regular**.

8 / 25

Raffaele (UNAL) FDF

Variants of dimensional regularization and dimensional reduction

Dimensional regularization

- CDR ("Conventional dimensional regularization"): Here singular and regular gluons (and other vector fields) are all treated as quasi-d-dimensional.
- HV (" 't Hooft Veltman"): Singular gluons are treated as quasi-d—dimensional but the regular ones are treated as 4—dimensional.

Variants of dimensional regularization and dimensional reduction

Dimensional reduction

- DRED ("original/old dimensional reduction"): Regular and singular gluons are all treated as quasi- d_s -dimensional.
- FDH ("four-dimensional helicity scheme"): Singular gluons are treated as quasi- d_s -dimensional but external ones are treated as 4-dimensional.

Treatment of vector fields in the four different regularization schemes

Prescription on which metric tensor has to be used in propagator numerators and vectors polarization sums, usually $d_s \to 4$

	CDR	HV	FDH	DRED
singular VF	$g^{\mu u}_{[d]}$	$g^{\mu u}_{[d]}$	$g^{\mu u}_{[d_s]}$	$g^{\mu u}_{[d_s]}$
regular VF	$g^{\mu u}_{[d]}$	$g^{\mu u}_{[4]}$	$g^{\mu u}_{[4]}$	$g^{\mu u}_{[d_s]}$

Using DRED and FDH

The crucial step is to split quasi- d_s -dimensional gluons into d-component gauge fields and $n_{\epsilon} \to 2\epsilon$ scalar fields, so called ϵ -scalars:

$$(g_{[d_s]})^{\mu\nu} = (g_{[d]})^{\mu\nu} + (g_{[n_{\epsilon}]})^{\mu\nu}$$

$$g_{[d_s]}^{\mu\nu} (g_{[d]})_{\nu\rho} = (g_{[d]})^{\mu}_{\rho}$$

$$g_{[d_s]}^{\mu\nu} (g_{[n_{\epsilon}]})_{\nu\rho} = (g_{[n_{\epsilon}]})^{\mu}_{\rho} \quad g_{[d]}^{\mu\nu} (g_{[n_{\epsilon}]})_{\nu\rho} = 0 \quad (g_{[n_{\epsilon}]})_{\nu\rho} g_{[4]}^{\rho\mu} = 0$$

 (\Longrightarrow) During the renormalization process the couplings of the ϵ -scalars must be treated as independent, resulting in different renormalization constants and β -functions.

The gauge and evanescent couplings

In QED the gauge coupling e and the evanescent coupling e_e renormalize differently being not protected by the Lorentz and the gauge invariance on $QS_{[d]}$

$$\beta_{e} = \mu_{\rm DS}^{2} \frac{d}{d\mu_{\rm DS}^{2}} \left(\frac{e}{4\pi}\right)^{2} = \frac{4}{3} \left(\frac{e}{4\pi}\right)^{4} + \dots$$

$$\beta_{e_{e}} = \mu_{\rm DS}^{2} \frac{d}{d\mu_{\rm DS}^{2}} \left(\frac{e_{e}}{4\pi}\right)^{2} = 6 \left(\frac{e}{4\pi}\right)^{4} - 6 \left(\frac{e}{4\pi}\right)^{2} \left(\frac{e_{e}}{4\pi}\right)^{2} + \dots$$

Even by imposing the renormalization condition $e = e_e$ the flows of the two couplings is different.

FDF: Four Dimensional Formulation of the FDH scheme

The external legs are treated as usual four dimensional states.

• Loop propagators in Feynman-'t Hooft gauge

$$\underbrace{{}^{k}_{a,\alpha} {}^{k}_{b,\beta}}_{k,\beta} = -i \, \delta^{ab} \, \frac{g_{[4]}^{\alpha\beta}}{k_{[4]}^{2} - \mu^{2} + i\varepsilon} \quad (gluon),$$

•
$$a \rightarrow b = i \delta^{ab} \frac{1}{k_{[4]}^2 - \mu^2 + i\varepsilon}$$
 (ghost),

$$\stackrel{\bullet}{\underset{a,A}{\dots}} \stackrel{k}{\underset{b,B}{\dots}} = -i \, \delta^{ab} \, \frac{G^{AB}}{k_{[4]}^2 - \mu^2 + i\varepsilon} \quad (\text{scalar}),$$

The scalars come from a dimensional reduction of $d_s = 4 + (-2\epsilon + n_{\epsilon})$ dimensional gluons vector fields.

In $d=4-2\epsilon$ dimensions we perform the decomposition of the loop momentum $k^{\alpha}_{[d]}$ in a 4-dimensional part $k^{\alpha}_{[4]}$ and in its orthogonal complement the -2ϵ -dimensional fixed vector $k^{\alpha}_{[-2\epsilon]} \equiv \mu^{\alpha}$

$$k_{[d]}^{\alpha} = k_{[4]}^{\alpha} + \mu^{\alpha} \quad \mu^{\alpha} \mu_{\alpha} = -\mu^{2}$$

$$g_{[d_{s}]}^{\alpha\beta} = g_{[4]}^{\alpha\beta} + g_{[n_{\epsilon-2\epsilon}]}^{\alpha\beta} \quad g_{[n_{\epsilon-2\epsilon}]}^{\alpha\beta} \to G^{AB} \quad \mu^{\alpha} \to i\mu Q^{A}$$

where the A and B label the components of the complementary space of dimension $d_s - 4$.

The metric G^{AB} and the vector Q^A needed to reformulate the Feynman rules satisfy

$$G^{AB}G^{BC} = G^{AC},$$
 $G^{AA} = 0,$ $G^{AB} = G^{BA}$
 $Q^AG^{AB} = Q^B,$ $Q^AQ^A = 1$

and reproduce the numerator of the Feynman diagrams of the Four Dimensional Helicity Scheme (FDH).

• Fermionic propagator in a loop

Dirac matrices have the following splitting

$$\gamma_{[d_s]}^{\alpha} = \gamma_{[4]}^{\alpha} + \gamma_{[n_{\epsilon} - 2\epsilon]}^{\alpha}$$

and satisfy in d_s dimensions the Clifford algebra

$$\{\gamma_{[d_s]}^{\alpha}, \gamma_{[d_s]}^{\beta}\} = 2g_{[d_s]}^{\alpha\beta}.$$

A possible 4-dimensional representation of $\gamma_{[n_{\epsilon}-2\epsilon]}$ matrices is in terms of $\gamma_{[4]}^5$ by the replacement

$$\gamma^{\alpha}_{[n_{\epsilon}-2\epsilon]} \to \gamma^{5}_{[4]}\Gamma^{A}$$
.

By imposing the rule $Q^A\Gamma^A=1$ needed to recover $\mu\mu=-\mu^2$ and $\Gamma^A\Gamma_A=0$ to reproduce the Breintenlohner-Maison prescription of γ_5

$$= i \delta_{\bar{j}}^{i} \frac{k_{[4]} + m - i \mu \gamma_{[4]}^{5}}{k_{[4]}^{2} - m^{2} - \mu^{2} + i\varepsilon} .$$

Generalized Internal legs

• Generalized subluminal Dirac equation. Given the ℓ four dimensional vector

$$\begin{split} \left(\ell - i \mu \gamma^5 - m \right) \, u_{\lambda} \left(\ell \right) &= 0 \,, \\ \left(\ell - i \mu \gamma^5 + m \right) \, v_{\lambda} \left(\ell \right) &= 0 \,, \\ \ell^{\mu} &= \ell^{\flat \mu} + \frac{m^2 + \mu^2}{2\ell \cdot q_{\ell}} q^{\mu}_{\ell}; \quad (\ell^{\flat})^2 = 0 = q_{\ell}^2. \end{split}$$

• Solutions of the generalized Dirac equation

$$u_{+}(\ell) = \left| \ell^{\flat} \right\rangle - \frac{(m - i\mu)}{\left[\ell^{\flat} q_{\ell} \right]} \left| q_{\ell} \right|, \quad u_{-}(\ell) = \left| \ell^{\flat} \right] - \frac{(m + i\mu)}{\left\langle \ell^{\flat} q_{\ell} \right\rangle} \left| q_{\ell} \right\rangle,$$

$$v_{-}(\ell) = \left| \ell^{\flat} \right\rangle + \frac{(m - i\mu)}{\left[\ell^{\flat} q_{\ell} \right]} \left| q_{\ell} \right|, \quad v_{+}(\ell) = \left| \ell^{\flat} \right] + \frac{(m + i\mu)}{\left\langle \ell^{\flat} q_{\ell} \right\rangle} \left| q_{\ell} \right\rangle.$$

(3a)

• Polarization sum of the solutions of the generalized Dirac equation

$$\sum_{\lambda=\pm} u_{\lambda}(\ell) \, \bar{u}_{\lambda}(\ell) = \ell - i\mu\gamma^{5} + m \,,$$

$$\sum_{\lambda=\pm} v_{\lambda}(\ell) \, \bar{v}_{\lambda}(\ell) = \ell - i\mu\gamma^{5} - m \,.$$

• Generalized Polarization Vectors

Once again let us decompose the massive **four**-dimensional vector $(\ell^2 = \mu^2)$

$$\ell^{\alpha} = \ell^{\flat^{\alpha}} + \hat{q}^{\alpha}_{\ell}$$

the μ -massive polarizations vectors are

$$\varepsilon_{+}^{\alpha}\left(\ell\right) = -\frac{\left[\ell^{\flat} \left|\gamma^{\alpha}\right| \hat{q}_{\ell}\right\rangle}{\sqrt{2}\mu}, \qquad \varepsilon_{-}^{\alpha}\left(\ell\right) = -\frac{\left\langle\ell^{\flat} \left|\gamma^{\alpha}\right| \hat{q}_{\ell}\right]}{\sqrt{2}\mu},$$

$$\varepsilon_{0}^{\alpha}\left(\ell\right) = \frac{\ell^{\flat\alpha} - \hat{q}_{\ell}^{\alpha}}{\mu}$$

with the usual Proca's completness relation

$$\sum_{\lambda=\pm,0} \varepsilon_{\lambda}^{\alpha}(\ell) \, \varepsilon_{\lambda}^{*\beta}(\ell) = -g_{[4]}^{\alpha\beta} + \frac{\ell^{\alpha}\ell^{\beta}}{\mu^{2}}$$

$$\varepsilon_{\pm}^{2}(\ell) = 0, \qquad \qquad \varepsilon_{\pm}(\ell) \cdot \varepsilon_{\mp}(\ell) = -1,$$

$$\varepsilon_{0}^{2}(\ell) = -1, \qquad \qquad \varepsilon_{\pm}(\ell) \cdot \varepsilon_{0}(\ell) = 0,$$

$$\varepsilon_{\lambda}(\ell) \cdot \ell = 0 \quad \lambda = \pm, 0.$$

Four point massless one-loop color ordered amplitudes A_4

In terms of the one-loop master integrals: boxes, triangles and bubbles

$$A_{4} = \begin{bmatrix} c_{1|2|3|4;0} I_{1|2|3|4} + (c_{12|3|4;0} I_{12|3|4} \\ + c_{1|2|34;0} I_{1|2|34} + c_{1|23|4;0} I_{1|23|4} + c_{2|3|41;0} I_{2|3|41}) \\ + (c_{12|34;0} I_{12|34} + c_{23|41;0} I_{23|41}) \end{bmatrix} + \mathcal{R} + O(\epsilon),$$

$$\mathcal{R} = \begin{bmatrix} c_{1|2|3|4;4} I_{1|2|3|4} [\mu^{4}] + (c_{12|3|4;2} I_{12|34} [\mu^{2}] \\ + c_{1|2|34;2} I_{1|2|34} [\mu^{2}] + c_{1|23|4;2} I_{1|23|4} [\mu^{2}] \\ + c_{2|3|41;2} I_{2|3|41} [\mu^{2}]) \\ + (c_{12|34;2} I_{12|34} [\mu^{2}] + c_{23|41;2} I_{23|41} [\mu^{2}]) \end{bmatrix}.$$

The coefficients c_i are just functions of the spinor variables: **NO** ϵ .

By the separation

$$\int \frac{d^D \ell_{[D]}}{(2\pi)^D} = \int \frac{d^{-\epsilon}(\mu^2)}{(2\pi)^{-2\epsilon}} \int \frac{d^4 \ell_{[4]}}{(2\pi)^4}.$$

and using polar coordinates in the -2ϵ dimensional Euclidean vector space, all the integrals in \mathcal{R} can be computed. In particular

$$\lim_{\epsilon \to 0} I_{1|2|3|4}^{4-2\epsilon} [\mu^4] = \lim_{\epsilon \to 0} \left(\epsilon(\epsilon - 1) 16\pi^2 I_{1|2|3|4}^{8-2\epsilon} \right) = -\frac{1}{6}.$$

We found a way of computing the rational part of scattering amplitudes by four-dimensional unitarity cuts.

Two Loops - Reduction

- Tensor reduction as at one-loop is necessary and useful.
- But not sufficient: need additional technology to reduce powers of irreducible invariants.
- Integration by parts (IBP)

$$0 = \int d^d \ell_1 d^d \ell_2 \frac{\partial}{\partial \ell_i^{\mu}} \frac{v_{[d]}^{\mu}}{\text{Denominator}}$$

Gives linear relations between integrals.

 $v^{\mu}_{[d]}$ is an IBP generating vector, algebraic geometry determines it by imposing the absence of doubled propagator.

• One of the terms in $v^{\mu}_{[d]}$ is of the form

$$\frac{\partial}{\partial \ell_i^{\mu}} \frac{\ell_i^{\mu}}{\text{Denominator}} = \frac{4 - 2\epsilon}{\text{Denominator}} + \dots$$

 \bullet seems to be intrinsic to these reductions as i.e. in the one-loop bubble by Passarino-Veltman

$$B^{\mu\nu}(k^2) = \frac{2 - \epsilon}{4(3 - 2\epsilon)} B_0(k^2) k^{\mu}_{[4]} k^{\nu}_{[4]} - \frac{1}{4(3 - 2\epsilon)} B_0(k^2) g^{\mu\nu}_{[4]}$$

This is a problem in view of implementing the $4-2\epsilon$ dimensional generalized unitarity program.

- Suspicion for a μ -augmented basis (with μ_1^2 , μ_2^2 , $\mu_1 \cdot \mu_2$). The tree amplitudes needed for two-loop, and computed by FDF rules, are embedded in a **six dimensional space**.
- That augmented basis is found by 4-dimensional IBPs

$$0 = \int d^d \ell_1 d^d \ell_2 \frac{\partial}{\partial \ell_{[4]_i}^{\mu}} \frac{v_{[4]}^{\mu}}{\text{Denominator}}.$$

Conversion Back to Standard Integrals

Want to trade μ_i inside integrand for ϵ .

There are basically two techniques to be combined:

• Gram determinants $[G(\{p_i\}, \{q_i\})] = \det_{i,j}(p_i \cdot q_j)$, do Feynman parametrization

$$P_{2,2}^{*,*}[(\mu_1^2)^2] = -\frac{\epsilon(1-\epsilon)}{(3-2\epsilon)(1-2\epsilon)G_{1,2,4}^2} P_{2,2}^{*,*}[G^2(\ell_1,1,2,4)].$$

• Standard (d-dimensional) IBPs with μ_i factors

$$0 = \int d^d \ell_1 d^d \ell_2 \frac{\partial}{\partial \ell_{i[d]}^{\mu}} \frac{\{1, \mu_1^2, \dots\} (\text{irreducible})^j v_{[4]}^{\mu}}{\text{Denominator}}$$

Conclusions

- Alternative dimensional regularization schemes are available for higher order computations in perturbative gauge theories. However there is not a wide use of them. It is needed to provide more practical examples to show the efficiency of those schemes.
- The four dimensional formulation (FDF) of the four dimensional helicity scheme (FDH) is a proposal to get the cut constructible and the rational part of one-loop amplitudes by just four dimensional cuts.
- FDF is efficient to find contributions of evanescent operators in perturbative computations.
- The foundations for d-dimensional unitarity within FDF at two loops have been discussed.