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A Beam Driven Plasma Wakefield Accelerator

A very high frequency structure acting as an energy transformer
 Accelerating structure is created anew every shot

» High gradients need high density plasmas

- ~10" e’/cm3 Focusing (E)
- >10GeV/m acceleration ¢ OUSME Accelerating Decelerating (£,)
- >MT/m focusing
i
electron
beam

Accelerated Witness Bunch

For wake excitation need a beam matched to plasma dimensions:
*Individual bunches, or a bunch train, 100’ s fs apart (or use SMI for long
bunches)
*Individual bunches small in all three dimensions
» High bunch charge for blow-out with large wake amplitude & good transport

*Need long, uniform high-density plasmas ,



Several Facilities and Groups Are Ramping-up Efforts

* BNL
- Use masking technique to create bunch trains or tailored current
profiles

- Low peak current, beam density
« Combine bunch trains with capillary and study resonant excitation
- New round preparing to look at low charge mode for quasi-nonlinear
regime

« SPARC
- Pulse train (comb) onto photocathode
- Control beam dynamics to recover time structure in electron bunch train
- Will combine with plasma source for experiments in the next few years

« DESY ‘Flash Forward’

- Dedicated beamline to use FLASH-II beam for LWFA/PWFA hybrid
experiments



« Demonstrate a single-stage high-energy
plasma accelerator for electrons

T Meter scale, high gradient, preserved
emittance, low energy spread, and high

2,? e : efficiency
% F - Commission beam, diagnostics and
§| Sssctorao plasma source (2012)

Epem ntal Area

- Produce independent drive & withess
bunch (2012-2013)

- Pre-ionized plasmas and tailored profiles
to maximize single stage performance:
total energy gain, emittance, efficiency
(2013-2015)

 First experiments with compressed positrons

- ldentify optimum technique/regime for
positron PWFA (2014-2016)

4



Primary Scientific Goal of FACET:
Demonstrate a Single Stage Plasma Accelerator for Electrons

UCLA E=HIE=EO!

E200: Collaboration between SLAC/UCLA
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Singly ionized Rb plasma is created by the electric field of the
beam. Betatron pinches further ionize Ar and Rb+

Slasma source starts with a heat pipe oven: Scalable, no = 10'4-10"7 e/cm3, L = 20-200 cm
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Plasma acceleration in Argon

UCLA g=tlEro!

Impressive results in Argon gas at P ~ 20 Torr:
- The Facet electron beam was able to consistently field-ionize Ar (ionization potential = 15.8 eV).
- More than Energy Doubling in Ar! Acceleration from 20 GeV to ~47 GeV.

- Head erosion 10x faster in Ar compared to Rb. Energy Gain Energy Loss
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Plasma acceleration in Argon
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Many other studies revealed interesting behaviors:

UCLA g=tlEro!
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- Waist dependance of beam-plasma interaction.
- Scan over beta functions.

- Use of various emittance spoiler foils.

- etc.



Beam-plasma interaction in Helium

UCLA g=HIFERO
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Beam-plasma interaction in Helium

CEGAIN (log scale)
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Energy gain suppression and recovery

Ar 50%, He 50%P = 32 Torr

> 10 GeV energy gain

* No energy gain in pure He

* Energy gain recovered when partial
pressure Ar back to 16 Torr
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Energy gain suppression with multiple plasma

densities

Li ovenP = 32 Torr

Energy gain strongly suppressed

* Peak beam density is very high!

* Ar/He ionization in addition to Li ionization
- Multiple plasma species, densities give
dephasing
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Energy gain recovered!

Li ovenP = 32 Torr

15 GeV energy gain

» Almost energy doubling

Ar/He ionization disabled (Emittance
Spoiler Foil In) by limiting peak beam
density
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Experimental Set-up

Ile¥y-SLAT

Upstream Fqil Downstream Betatron X-rays
Toroid :ﬂ id Ql

Plasma Oven

N T— 15
14 16 18 20 22 24 26 28
Energy (GeV)

* Secondary ionization depends on maximum beam density

* Foils of different thickness and composition used to increase the
beam emittance and limit secondary ionization

* We measure how the distributed injection of this dark current loads
the wake and reduces the transformer ratio T = E+/E-



Emittance of the beam used to vary length of the wake (head
erosion) and thereby vary energy loss

Ile¥y-SLAT

- As the length increases so ~
O * no foll
does the number of = 2 fm .
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<]
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8) 0 6. fail 3 | :
 Each time the beam S A
pinCheS down to a g 04 ......... ‘ .........
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injected into the wake
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The Resulting Beam Loading reduces Transformer ratio

Transformer Ratio <T> = E+/E- = AW+/AW-
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* no foll
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UCLA g=tlEro!
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PIC Simulations Confirm that Beam Loading by Distributed
Injection of Rb 2+ Electrons and Reduced T

* Peak Accelerating field decreases from 44 GeV/m to 35 GeV/m
due to beam loading

* Transformer ratio decreases from 1 to 0.85

Propagation Length (cm)
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(a) (b)

Can we use ionization injection in a controlled manner to get narrow
energy spread beams?!

UCLA g=HIFERO
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Concept for controlled ionization injection

UCLA g=tlEro!

General concept of lonization
Injection into a PWFA

Wi+ mcY/e == Drive Bunch

) \ - . Electron
' Trajectories

lons

20l . g:m;aci';‘; 2 Use Li plasma (not Rb) to ensure
€15 ——==f 5| no dark current (Li 2+ >70eV)
§105 [ % Use variable percentage He:Ar mix
&5 . /|” 2| as buffer to control quantity of

%% 10 o 10 20 | ionization-injection trapped charge
(a) Axial Position
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Simulations Show Monoenergetic

Bunchlets with ~1% Energy spread
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Mono-energietic bunchlets produced by ionization injection

UCLA 150!

* Preliminary results are very encouraging! energyl

* Preliminary analysis suggests mean charge of 30pC, dE/E few %
and success rate of trapping about 80%

* Bunchlets often have transverse displacement as well

» Going forward we are working to improve control, stability and
Instrument resolution



Mono-energietic bunchlets produced by ionization
injection

UCLA g=-F-tof

Preliminary: two weeks old!
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Hosing Studies

CLA 21 A
Goal: control and quantify hosing by inducing known z-x tilt on beam. SEXT-2ER X: -0.2 mm U b I\
Current method: stretch beam in linac, add dispersion at IP with sextupole mover.
Main challenge: linac 6D phase-space not well know.

lasma parameters:
b vapour 1.1e17/cm?3 30
m FWHM

hase space simulations of
deal z-p profiles.

{o0sing most easily
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ounch is in the accelerating
bhase of the plasma bubble:

> GeV acceleration by
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Betatron gamma-rays

Vacuum pipe
Dipole PP

W I mm
+ Lanex

Sextufilter +
Lanex

Facet electron beam

20 GeV,3 nC
—

Ar gas
or Rb vapor

Deflected electrons
(Cherenkov detector)

Measuring gamma-ray radiation reveals important information on the
beam dynamics in the plasma.

---> Assessing the matching of the beam in the plasma cavity and the
potential emittance growth in the plasma.

Example of measured and fitted gamma-ray beam profile

Experimental image Model image Difference
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---> Best fit for a 10 um beam size and 150 mm.mrad normalized emittance (BMAG = 2.6).



The Future: This Month

UCLA E=HIE=EO!

Already a very successful run in 2013!
 Improved performance of SLAC linac and resulting high beam density
has opened new avenues for beam-plasma interaction

- Lower ionization potential vapors better for head-erosion but un-
controlled dark current can load the wake and limit the transformer ratio

- Simple Ar gas cell for beam-ionized plasma source gives good
performance for single bunch experiments

 High plasma density, fields ~ 100GeV/m

- Adiabatic taper, low divergence exit

- Investigating controlled ionization injection for low dE/E witness bunch

The remainder of the run will focus on:

I Creating an independent drive/witness bunch from the linac

I Injecting them into a pre-formed laser ionized Li plasma
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Use a Notch Collimator to Create Drive-Witness Bunches

1 AL
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Now operating the tools to make and measure beams
for the two bunch PWFA experiments
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Use a Laser to Turn Lithium Vapor into a Plasma —
Axicon Geometry Determines the Plasma Length

UCLA g=-F-tof

1.5 m Plasma with 1° Axicon and

axicon
: 5 cm diameter laser beam
Laser | Plasma

l |
[

1 .

Line focus longitudinally
l
| < 80 cm > < 150 cm
mask

Bessel beam radial profile

60000

40 cm long argon plasma
0 0 20 W 0 0 6 from 2 degree axicon at UCLA

Distance (microns)




The Future: The next Few Years
Expanding Plasma Collaborations and Directions

°Trojan Horse Plasma Wakefield Acceleration
- (UCLA/SLAC/Tech-X/MPI/HHU)

*Study of the Self-Modulation of Long Lepton

=y

Bunches in Dense Plasmas and its Application to —
Advanced Acceleration Techniques
- (IST/MPI/SLAC)

°Investigation of Hot Plasmas and Fourier Domain
Holography of Plasma Wakes
- (Duke/SLAC/U.T. Austin/UCLA)

*Helmholtz VI for Plasma Acceleration
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Facility upgrades like the laser are enabling additional programs that will
accelerate progress and increase FACET science output
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The Future: July 25-26, 2013
Program Advisory Committee to review new proposal

ol A
~ P M\
ol A>
P B ™ N\ N ATIONAL ACCELERATOR LABORATORY DOE | Stanford | SLAC | SSRL | LCLS | AD | PPA | Photon Science | PULSE | SIMES
FACET
An Office of Science User Facility
+ SLAC Detailed Index | SLAC Web | People D)
AC CELERATOR
9 T AD SLACPortal > Accelerator Research Division > FACET User Facility > SAREC

SAREC 4th Meeting
(July 2013)

TIMELINE

= Call for Proposals - May 21st

= Proposals Due - June 17th

m Comments from SLAC - June 28th
m Comments from SAREC - July 12th
= Proposal changes due - July 19th
= Review - July 25th

Users Meeting
Agenda

Registration (no fees)
Participants

Information for
Proposers &
Experimenters

REVIEW INFORMATION

m Proposal Template
SLAC Test Facilities
Information & Contacts

Accommodation & SAREC REVIEW SITES
Local Travel @ July-2013 Proposals & Agenda
m Oct-2012 Proposals & Agenda

Travel & Directions
m Jan-2012 Proposals & Agenda

Visa Information . @ Jan-2011 Proposals & Agenda
Wireless Internet SLAC l-}ccelerator Research Experimental Program

Access Committee (SAREC)

SAREC OCT12 Meeting

Photos 4th. SAREC REVIEW MEETING - July 25th-26th, 2013

Cypress Conference Room (B40/147) - View Map
SLAC National Accelerator Laboratory

U.S. DEPARTMENT OF

ENERGY

Office of Science

Charge to committee:
The Accelerator Research Division (ARD) at the SLAC National Accelerator Laboratory manages

a ctrana R &N nracram in A nnalaratar Qniancra and Tanhnalaaxw A o nart af thic nrnaoram tha

You are invited!




The Future: Beyond FACET...FACET-II

o1 AL

I M\

In 2016 SLAC will start begin the second phase of the x-ray laser
program and start constructing LCLS-II

 Impact to the middle kilometer of the SLAC linac will halt FACET
operations

Working with DOE to develop ideas for FACET-II
» Want to minimize interruption to existing programs
» Want to build off success of FACET and expand capabilities
» Science case developed and submitted in February

* We look forward to hearing your ideas at this workshop!
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FACET I
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In early 2016, LCLS-II, will begin commissioning using part of the tunnel occupied by FACET
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Three main themes at FACET Il

o1 AR

Fhm AN

*High gradient acceleration techniques that will reduce the cost of
both a future high-energy collider and linac-based light sources

*High brightness beam techniques that improve the generation,
preservation, and application of such beams

*Novel radiation techniques (spanning terahertz to gamma-rays)
that can be generated by FACET's high brightness beams
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Summary

UCLA E=HIE=EO!

It is a very exciting time for beam driven plasma accelerators!

* Optimistic we will see demonstration of high-gradient meter scale plasma
stage within the next year with good beam quality and efficiency

« Coming years will build on this with injection and higher brightness beams
paving the way for the first applications

On behalf of the E200 Collaboration:

E.AdIli, S. Corde, J. P. Delahaye, J. Frederico, S.J. Gessner, M.J. Hogan,
S. Li, M.D. Litos, T. Raubenheimer, Z. Wu

(SLAC, Stanford, USA),
W. An, C.E. Clayton, C. Joshi, K.A. Marsh, W. Mori, N. Vafaei-Najafabadi
(UCLA, Los Angeles, USA),
W. Lu (Tsinghua Univ. of Beijing, China and UCLA)
P. Muggli (MPI, Munich, Germany)
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