SUMMARY: ground cosmic ray experiments

P. Tinyakov^{1,2}

¹Université Libre de Bruxelles, Bruxelles, Belgium

²Institute for Nuclear Research, Moscow, Russia

OUTLINE

OUTLINE

OUTLINE

KEY QUESTIONS:

- spectral features
- composition
- anisotropy

The ARGO-YBJ experiment

High Altitude Cosmic Ray Observatory @ YangBaJing, Tibet, China

- talks by I. De Mitri, P. Montini, Cao Zhen
- size $\sim 100 \times 100$ m

The ARGO-YBJ experiment

Event Rate ~ 3.5 kHz for N_{bit} >20 - Duty cycle $\sim 86\%$ - 10^{11} evts/yr - 100TB/yr

High space/time granularity

- + Full coverage
- + High altitude

 \Rightarrow

detailed study on the EAS space/time structure with unique capabilities

3-D view of a detected shower

Top view of the same shower

High Altitude Cosmic Ray Observatory @ YangBaJing, Tibet, China

- talks by I. De Mitri, P. Montini, Cao Zhen
- size $\sim 100 \times 100$ m

KASCADE-Grange

- talk by A. Chiavassa
- size \sim 800 \times 800 m

KASCADE-Grange

- talk by A. Chiavassa
- size $\sim 800 \times 800$ m

- talks by A. Tamburro, P. Desiati
- size $\sim 1 \times 1$ km

- talks by A. Tamburro, P. Desiati
- size $\sim 1 \times 1$ km

- talks by V. Prosin, D. Kostunin
- \bullet size $\sim 1.5 \times 1.5$ km

- talks by V. Prosin, D. Kostunin
- size $\sim 1.5 \times 1.5$ km

Important: different detection methods

- scintillators
- muon detectors
- Cherenkov detectors

SPECTRUM (LOW ENERGIES)

ARGO-YBJ

The light component spectrum

talks by De Mitri, Montini

KASCADE-Grande

IceTop

talk by Tamburro

Tunka

- 1. Agreement with KASCADE-Grande
- 2. Agreement with old Fly's Eye, HiRes and TA spectra.

talk by Prosin

Tunka

talk by Prosin

COMPOSITION (LOW ENERGIES)

Composition from IceTop:

WAITING FOR ICRC

ANISOTROPY (LOW ENERGIES)

Large-angle anisotropy observed at the permil level

Recent observations of the CR anisotropy

Harmonic analysis

LSA First harmonic amplitude and phase

Need full sky coverage:

Low-energy summary

SPECTRUM:

- not a simple power law several features beyond the knee. Hardening $\sim 10^{16}$ eV; steepening $\sim 8 \times 10^{16}$ eV
- different features for different components
- explanation: cut-off in acceleration spectrum? local propagation effects?

COMPOSITION:

- difficult measurement; no full agreement between experiments
- common trend: change from lighter to heavier at energies 10¹⁵ – 10¹⁷ eV

• ANISOTROPY:

- observed at the permil level
- low multipoles: local sources + diffusion?
- medium-scale anisotropy: not inexplicable, but unexplained

[see talks by luppa and M Ageles Perez Garcia]

Low-energy summary

SPECTRUM:

- not a simple power law several features beyond the knee. Hardening $\sim 10^{16}$ eV; steepening $\sim 8 \times 10^{16}$ eV
- different features for different components
- explanation: cut-off in acceleration spectrum? local propagation effects?

COMPOSITION:

- difficult measurement; no full agreement between experiments
- common trend: change from lighter to heavier at energies $10^{15}-10^{17}\;\text{eV}$

ANISOTROPY:

- observed at the permil level
- low multipoles: local sources + diffusion?
- medium-scale anisotropy: not inexplicable, but unexplained

[see talks by luppa and M Ageles Perez Garcia]

Low-energy summary

SPECTRUM:

- not a simple power law several features beyond the knee. Hardening $\sim 10^{16}$ eV; steepening $\sim 8 \times 10^{16}$ eV
- different features for different components
- explanation: cut-off in acceleration spectrum? local propagation effects?

COMPOSITION:

- difficult measurement; no full agreement between experiments
- common trend: change from lighter to heavier at energies $10^{15}-10^{17}\;\text{eV}$

ANISOTROPY:

- observed at the permil level
- low multipoles: local sources + diffusion?
- medium-scale anisotropy: not inexplicable, but unexplained

[see talks by Juppa and M Ageles Perez Garcia]

HIGH ENERGIES

Modern UHECR experiments

The Pierre Auger Experiment

• 6 x 4 Fluorescence Telescopes

• talks by D. Martello, D. Boncioli, G. Rodrigues Fernandez

TELESCOPE ARRAY DETECTOR

- 507 scintillator detectors covering 680 km²
- 3 fluorescence sites, 38 telescopes
- ullet SD relative size: TA \sim 9 imes AGASA \sim PAO/4

SPECTRUM (HIGH ENERGIES)

Combined Auger Spectrum (FD+SD)

[talk by Rodrigues Fernandez]

TA SD spectrum

[talk by Tinyakov]

Comparison of different experiments

Auger-TA WG result

Energy Spectrum comparison

Do these spectra fit anything?

— Yes, they both can be fitted!

[see talk by Stanev]

[see talk by Batista for propagation effects]

COMPOSITION (HIGH ENERGIES)

Auger composition

Syst uncertainty < 13 g cm⁻² X_{max} resolution ~ 20 g cm⁻²

 $\langle X_{max} \rangle$ became lower with energy

 X_{max} distributions become narrower with energy

TA composition

ANISOTROPY (HIGH ENERGIES)

Auger: anisotropy at highest energies

Anisotropy

The 69 events with Energy > 55 EeV detected by the Pierre Auger Observatory

Blue circles of radius 3.1° centered at the positions of the 318 AGNs < 75 Mpc in the VCV catalog.

The exposure weighted fraction of the sky covered by the blue circles is 21%.

Chance probability for a isotropic source distribution < 1%

TA results can not exclude this conclusions

TA: anisotropy at highest energies

High-energy summary

SPECTRUM:

- \bullet Spectra roughly agree up to an overall shift $\sim 20\%$
- Interpretation depends on the absolute energy scale: GZK cutoff or cutoff in the sources? e^+e^- on CMB or Galactic-extragalactic transition?
- Why SD and FD energies differ?

COMPOSITION:

- key question for the future of the field
- disagreement between Auger and TA
- Auger-TA WG is looking into this issue
- related to muon puzzle?
- can light nuclei solve all problems?

see talk by Petrukhin] Isee talk by Faraioni

ANISOTROPY:

- no significant anisotropies found
- hints in Auger and TA at high energies: are we finally starting to see deviations from isotropy?
- common Auger + TA harmonic analysis is on the way

High-energy summary

SPECTRUM:

- \bullet Spectra roughly agree up to an overall shift $\sim 20\%$
- Interpretation depends on the absolute energy scale: GZK cutoff or cutoff in the sources? e⁺e⁻ on CMB or Galactic-extragalactic transition?
- Why SD and FD energies differ?

COMPOSITION:

- key question for the future of the field
- disagreement between Auger and TA
- Auger-TA WG is looking into this issue
- related to muon puzzle?
- can light nuclei solve all problems?

[see talk by Petrukhin] [see talk by Fargion]

ANISOTROPY:

- no significant anisotropies found
- hints in Auger and TA at high energies: are we finally starting to see deviations from isotropy?
- common Auger + TA harmonic analysis is on the way

High-energy summary

SPECTRUM:

- \bullet Spectra roughly agree up to an overall shift $\sim 20\%$
- Interpretation depends on the absolute energy scale: GZK cutoff or cutoff in the sources? e⁺e⁻ on CMB or Galactic-extragalactic transition?
- Why SD and FD energies differ?

COMPOSITION:

- key question for the future of the field
- disagreement between Auger and TA
- Auger-TA WG is looking into this issue
- related to muon puzzle?
- can light nuclei solve all problems?

[see talk by Petrukhin] [see talk by Fargion]

ANISOTROPY:

- no significant anisotropies found
- hints in Auger and TA at high energies: are we finally starting to see deviations from isotropy?
- common Auger + TA harmonic analysis is on the way

OUTLOOK

- Upgrades & extensions
 - LHASSO, LAWCA
 - Tunka-Rex
 - Low-energy extensions in Auger and TA
- New detection techniques
 - AERA
 - CODALEMA
 - LOFAR
- Next generation detectors
 - go to space? (JEM-EUSO)
 - build large ground detector?

[see talk by Cao Zhen] [see talk by D.Kostunin]

[see talk by J.Maller] [see talk by I.Martin] [see talk by S.Thoudam]

[see talk by P.Picozza]

OUTLOOK

- Upgrades & extensions
 - LHASSO, LAWCA
 - Tunka-Rex
 - Low-energy extensions in Auger and TA
- New detection techniques
 - AERA
 - CODALEMA
 - LOFAR
- Next generation detectors
 - go to space? (JEM-EUSO)
 - build large ground detector?

[see talk by Cao Zhen] [see talk by D.Kostunin]

[see talk by J.Maller] [see talk by I.Martin] [see talk by S.Thoudam]

[see talk by P.Picozza]

OUTLOOK

- Upgrades & extensions
 - LHASSO, LAWCA
 - Tunka-Rex
 - Low-energy extensions in Auger and TA
- New detection techniques
 - AERA
 - CODALEMA
 - LOFAR
- Next generation detectors
 - go to space? (JEM-EUSO)
 - build large ground detector?

[see talk by Cao Zhen] [see talk by D.Kostunin]

[see talk by J.Maller] [see talk by I.Martin] [see talk by S.Thoudam]

[see talk by P.Picozza]