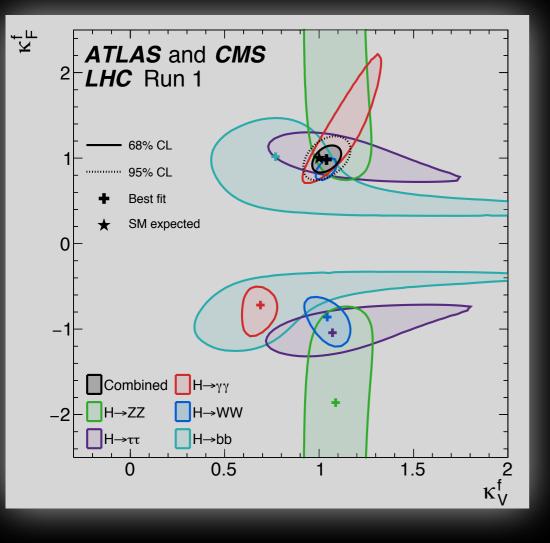
Future Circular Collider Studies

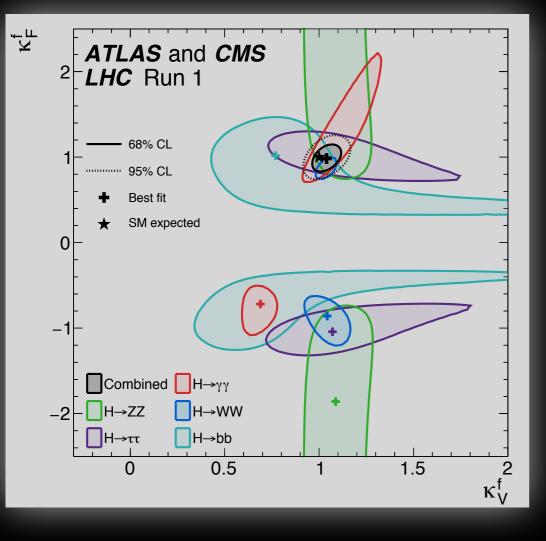


B. Di Micco Università degli Studi di Roma Tre & I.N.F.N. for RDFA WG1

k_V coupling to vectors, k_F coupling to fermions

h $\rightarrow \gamma\gamma$, WW, ZZ, $\tau\tau$ observed h \rightarrow tt (observed indirectly)

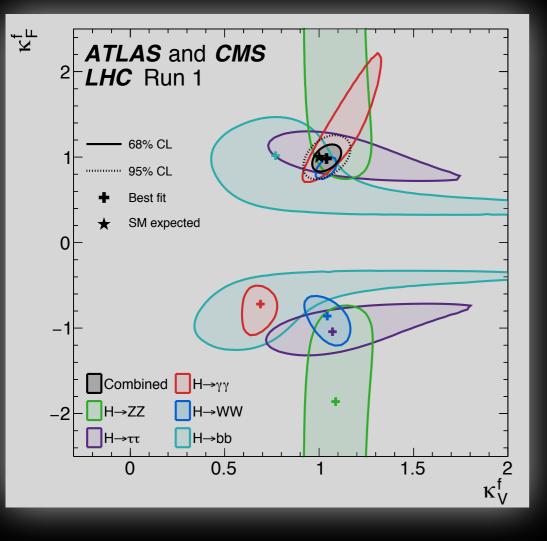
h → bb :-(


$$h \rightarrow \mu\mu$$
 HL-LHC $h \rightarrow hh$ HL-LHC ???

 $h \rightarrow cc (???)$

 $h \rightarrow ee(:-):-):-))h \rightarrow uu,dd,ss:o):oO):oOO)$

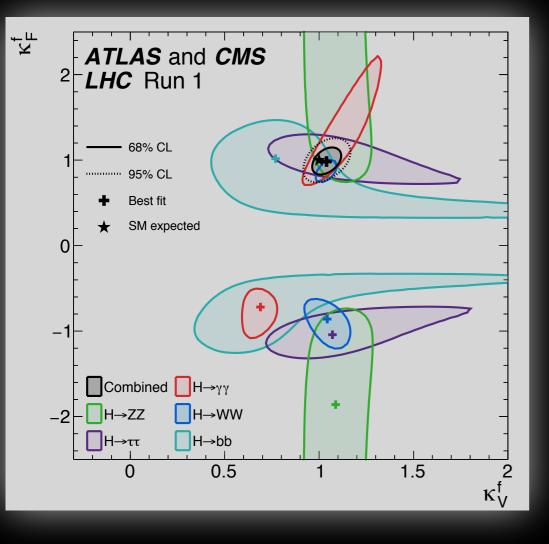
k_V coupling to vectors, k_F coupling to fermions



$$\begin{split} & \tilde{-} \frac{1}{4g'^4} B_{\mu} B^{\mu\nu} - \frac{1}{4g^2} W_{\mu} W^{\mu\nu a} - \frac{1}{4g^2} G_{\mu} G^{\mu\nu a} \\ & + \bar{Q}_i i \tilde{-} Q_i + \bar{u}_i i \tilde{-} \iota_i + \bar{d}_i i \tilde{-} d_i + \bar{L}_i i \tilde{-} L_i + \bar{\ell}_i i I \\ & + \left(Y_u^{ij} \bar{Q}_i u_j \tilde{H} + Y_d^{ij} \bar{Q}_i d_j H + Y_l^{ij} \bar{L}_i \ell_j H + c.c. \right) \\ & - \lambda (H^{\dagger} H)^2 + \lambda v^2 I \tilde{-} H - (D^{\mu} H)^{\dagger} D_{\mu} H \\ & - (D^{\mu} H)^{\dagger} D_{\mu} H \rightarrow - (\partial^{\mu} - \partial_{\mu} H - 2 \frac{M_W^2}{v} \tilde{-}^{u} W_{\mu}^- H - \frac{M_Z^2}{v} Z^{\mu} H + \dots \end{split}$$

- $h \rightarrow \gamma \gamma$, WW, ZZ, $\tau \tau$ observed $h \rightarrow tt$ (observed indirectly)
- h → bb :-(
- $h \rightarrow \mu\mu$ HL-LHC $h \rightarrow hh$ HL-LHC ???
- $h \rightarrow cc (???)$
- $h \rightarrow ee(:-):-):-)$ $h \rightarrow uu,dd,ss:o):oo):oo)$

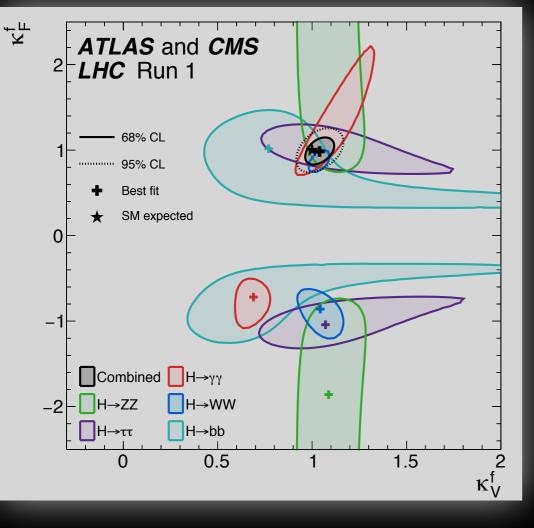
k_V coupling to vectors, k_F coupling to fermions


$$\begin{split} & \mathcal{L} = \\ & -\frac{1}{4g'^4} B_{\mu} B^{\mu\nu} - \frac{1}{4g^2} W_{\mu} W^{\mu\nu a} - \frac{1}{4g^2} G_{\mu} G^{\mu\nu a} \\ & + \bar{Q}_{ii} Q_{i} + \bar{u}_{i} Q_{i} + \bar{u}_{i} Q_{i} + \bar{d}_{i} Q_{i} + \bar{L}_{i} - \bar{L}_{i} + \bar{L}_{i} Q_{i} + \bar{L}_{i} - \bar{L}_{i} + \bar{L}_{i} - \bar{L}_{i} + \bar{L}_{i} Q_{i} + \bar{L}_{i} + \bar{L}_{i} - \bar{L}_{i} + \bar{L}_{i} + \bar{L}_{i} - \bar{L}_{i} + \bar{L}_{i}$$

- h $\rightarrow \gamma\gamma$, WW, ZZ, $\tau\tau$ observed h \rightarrow tt (observed indirectly)
- h → bb :-(
- $h \rightarrow \mu \mu$ HL-LHC $h \rightarrow hh$ HL-LHC ???
- $h \rightarrow cc(???)$
- $h \rightarrow ee(:-):-):-)$ $h \rightarrow uu,dd,ss:o):oo):oo)$

INFN

k_V coupling to vectors, k_F coupling to fermions



$$\begin{split} & -\frac{1}{4g'^4} B_{\mu} B^{\mu\nu} - \frac{1}{4g^2} W_{\mu} W^{\mu\nu a} - \frac{1}{4g^2} G_{\mu} G^{\mu\nu a} \\ & + \bar{Q}_{i} (\tilde{Q}_{i} + \bar{u}_{i}) L_{i} + \bar{d}_{i} (\tilde{Q}_{i} + \bar{L}_{i}) L_{i} + \bar{L}_{i} (\tilde{Q}_{i} + \bar{L}_{i}) L_{i} + \bar{L}_{i} (\tilde{Q}_{i} + \bar{L}_{i}) L_{i} + (Y_{\nu}^{ij} \bar{Q}_{i} + \tilde{L}_{i}) \tilde{H} + Y_{d}^{ij} \bar{Q}_{i} L_{i} + V_{l}^{ij} \bar{L}_{i} L_{j} H + c.c.) \\ & -\lambda (H H)^{2} + \lambda v^{2} I \tilde{H} - (D^{\mu} H)^{\dagger} D_{\mu} H \\ & - (D^{\mu} H)^{\dagger} D_{\mu} H \rightarrow - (\partial^{\mu} D_{\mu} H - 2 \frac{M_{W}^{2}}{v} P^{\mu} H - \frac{M_{Z}^{2}}{v} Z^{\mu} H + \dots \end{split}$$

- h $\rightarrow \gamma\gamma$, WW, ZZ, $\tau\tau$ observed h \rightarrow tt (observed indirectly)
- h → bb :-(
- $h \rightarrow \mu \mu$ HL-LHC $h \rightarrow hh$ HL-LHC ???
- $h \rightarrow cc(???)$
- $h \rightarrow ee(:-):-):-)$ $h \rightarrow uu,dd,ss:o):oo):oo)$

k_V coupling to vectors, k_F coupling to fermions

h $\rightarrow \gamma \gamma$, WW, ZZ, $\tau \tau$ observed h \rightarrow tt (observed indirectly)

h → bb :-(

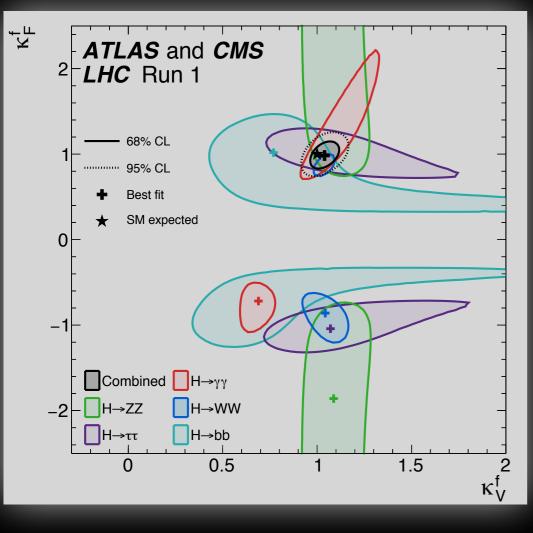
$$h \rightarrow \mu\mu$$
 HL-LHC $h \rightarrow hh$ HL-LHC ???

 $h \rightarrow cc(???)$

 $h \rightarrow ee(:-):-):-)$ $h \rightarrow uu,dd,ss:o):oo):oo)$

$$\mathcal{L} = -\frac{1}{4g'^4} B_{\mu} B^{\mu\nu} - \frac{1}{4g^2} W_{\mu} W^{\mu\nu a} - \frac{1}{4g^2} G_{\mu} G^{\mu\nu a} + \bar{Q}_{i} i \partial_{\mu} Q_{i} + \bar{u}_{i} i \partial_{\mu} U_{i} + \bar{d}_{i} i \partial_{\mu} d_{i} + \bar{L}_{i} i \partial_{\mu} L_{i} + \bar{\ell}_{i} i I + \bar{Q}_{i} i \partial_{\mu} H + Y_{d}^{ij} \bar{Q}_{i} \partial_{\mu} H + Y_{l}^{ij} \bar{L}_{i} \partial_{\mu} H + c.c.$$

$$-\lambda (H^{\dagger} H)^{2} + \lambda v^{2} I - (D^{\mu} H)^{\dagger} D_{\mu} H + (D^{\mu} H)^{\dagger$$


Not much left to test, but still:

- is the Higgs boson responsible for light lepton masses?
- is the Higgs boson the only field having a potential term?
- Where is gravity?

ROMA TRE UNIVERSITÀ DEGLI STUDI

Particle physics: where do we stand? (understanding the present to build up the future)

k_V coupling to vectors, k_F coupling to fermions

h → $\gamma\gamma$, WW, ZZ, $\tau\tau$ observed h → tt (observed indirectly) h → bb :-(

$$h \rightarrow \mu\mu$$
 HL-LHC $h \rightarrow hh$ HL-LHC ???
 $h \rightarrow cc$ (???)

 $h \rightarrow ee(:-):-):-))h \rightarrow uu,dd,ss:o):oO):oOO)$

$$\begin{split} & = \\ & -\frac{1}{4g'^4} B_{\mu} B^{\mu\nu} - \frac{1}{4g^2} W_{\mu} V^{\mu\nu a} - \frac{1}{4g_s^2} G_{\mu\nu a} \\ & + \bar{Q}_i i D_i Q_i + \bar{u}_i i D_i i + \bar{d}_i i D_i + \bar{L}_i i D_i + \bar{L}_i i D_i + \bar{\ell}_i i D_i \\ & + \left(Y_{\nu}^{ij} \bar{Q}_{i\nu j} \tilde{H} + Y_d^{ij} \bar{Q}_{i\nu j} H + Y_l^{ij} \bar{L}_{i\nu j} H + c.c. \right) \\ & + \left(H^{i} H \right)^2 + \lambda v^2 I^{+} H - (D^{\mu} H)^{\dagger} D_{\mu} H \\ & - (D^{\mu} H)^{\dagger} D_{\mu} H \rightarrow - (\partial^{\mu} - \partial_{\mu} H - 2 \frac{M_W^2}{4} U^{\mu} W_{\mu}^{-} H - \frac{M_Z^2}{4} Z^{\mu} H + \dots \end{split}$$

Not much left to test, but still:

is the Higgs boson responsible for light lepton masses?

curvature

- is the Higgs boson the only field having a potential term?
- Where is gravity?

Here is it!! Einstein-Hilbert action

$$S = \int \left[\frac{1}{2}M_{\rm pl}^2 R + \mathcal{L}\right] d^4x \sqrt{-g} \qquad \qquad \text{met}$$

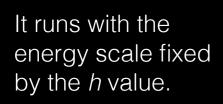
tric the second se

Higgs potential, inflation and cosmological constant

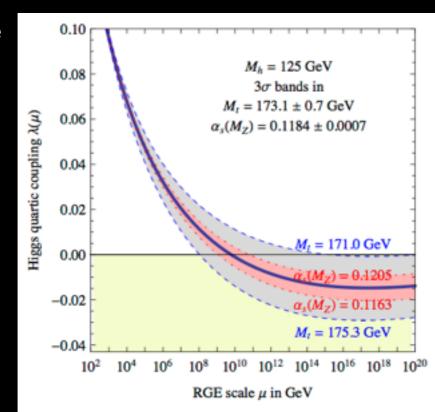
$$S = \int \left[\frac{1}{2}M_{\rm pl}^2 R + \mathcal{L}\right] d^4x \sqrt{-g} = \int \left[\frac{1}{2}M_{\rm pl}^2 R - \frac{1}{2}\partial_\mu h\partial^\mu h + V(h) + \dots\right] d^4x \sqrt{-g}$$

need a scalar field (h is a scalar field)

need a well shaped potential


$$V(\phi) >> \frac{1}{2}\dot{\phi}^2 \longrightarrow H^2 = \frac{8\pi G}{3}V(\phi) \simeq const. \Longrightarrow a(t) \simeq e^{Ht} \quad \left(H(t) = \frac{\dot{a}}{a}\right)$$

slow-roll condition


universe radius, exponentially expanding during inflation

In order to make this to work
$$~V(h)\sim\lambda h^4~\lambda\sim 10^{-13}~~h>>h_0$$

 λ determined by the Higgs boson mass (λ_{mh} ~ 0.129)

Intringuing, λ nearly vanishes for high h value with the present value of top and Higgs mass.

The Higgs potential could have such role if properly shaped

> need to be flat to fit slow-roll condition

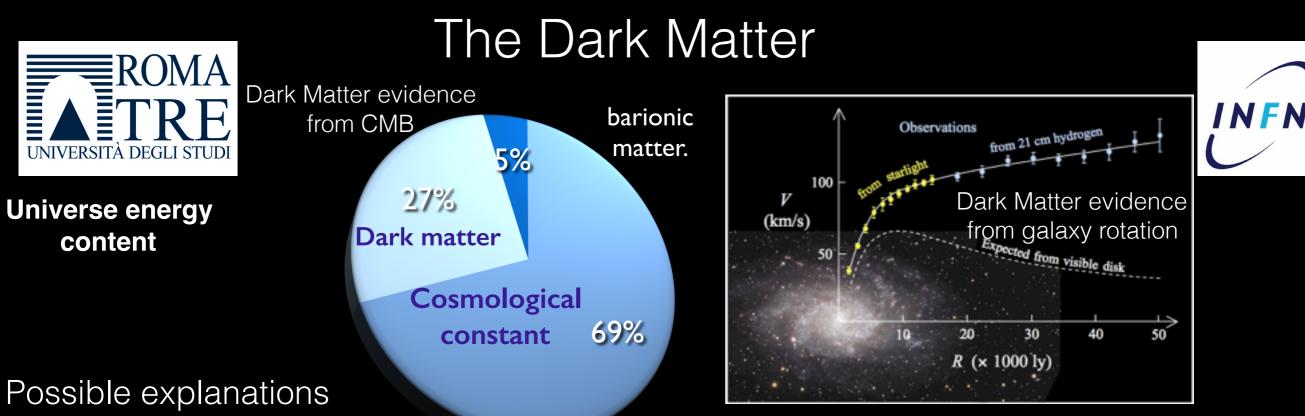
> > h

 $\overline{8\pi G} = V(h_0)$

Inflationary epoch

 h_0 cosmological constant

 $V(h_0)$

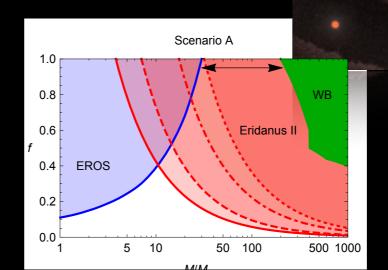

V(h)

 $h_0 = \langle 0 | h | 0 \rangle$ Higgs VEV

 Λc^4

The value of the potential at its minimum sets the cosmological constant (i.e. the amount of dark energy)

Understanding the Higgs potential is the last missing piece of the SM, and it could have fundamental cosmological implications.



- WIMP, Weak interacting Massive Particles nice explanation to motivate High Energy Physics but nothing forbids these particles to be at Plank mass and have negligible interaction with matter (look at it forever ??)
- Primordial black holes (black hole formed at the beginning of universe formation), renewed interest after gravitational wave observation from the collapse of two 30 solar mass black holes

super-massive black hole, at the center of each galaxy are strongly thought to be of primordial origin (no other mechanism able to build up so much massive black hole)

Systematic PBH study arXiv: 1607.06077

- black hole of ~ 30 M_{solar} and sublunar mass black holes still not excluded but could be excluded in the near future;
- 2) Planck mass black hole allowed and impossible to exclude at the moment

The usual two ways

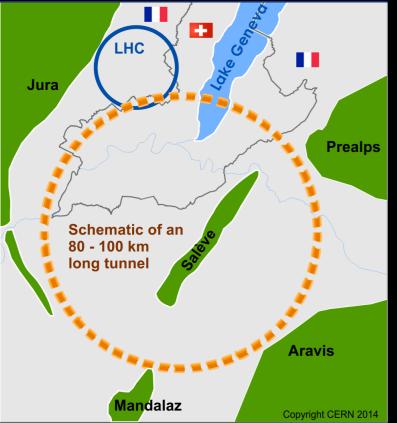
1) High intensity frontier (precision physics) Higgs, W and Z factories

> circular: FCC-ee, CepC linear: ILC, CLIC

2) High energy frontier physics

as high as money, politic and technology allows FCC-pp, SppC

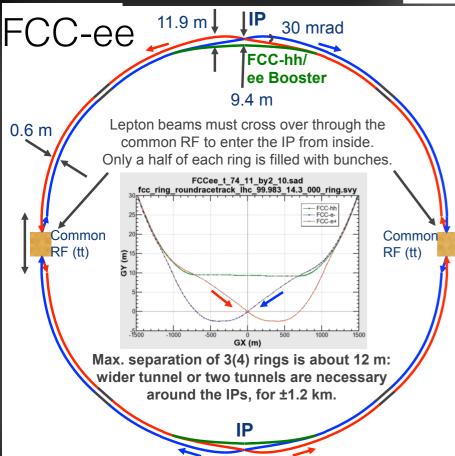
Where, what when to build

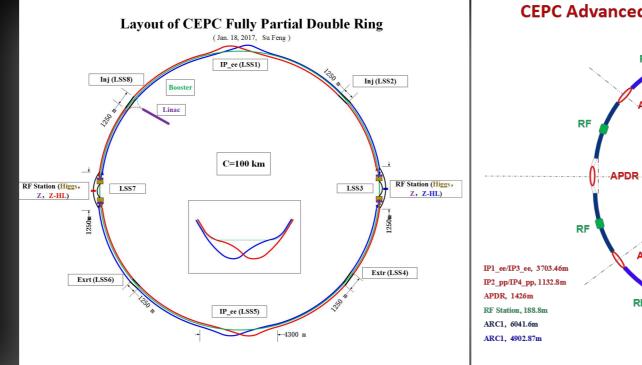

Chinese project

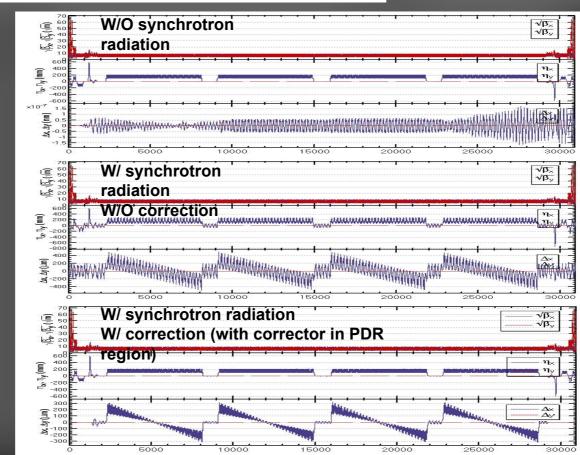
- original idea to build a 50 km e⁺e⁻ collider;
- moving to a 100 km e⁺e⁻ (CepC) followed by a 100 km pp collider (SppC)
- timeline:
 - CDR 2017; TDR 2022; operation: 2030

CERN project

- build a circular collider 100 km length under Geneve lake;
- main target: pp collisions at 100 TeV, use e+e- as a possibility to start constructing the tunnel and functionalities while waiting that magnet technology for pp becomes mature;
- 90 100 km fits well geological structure (going for a detailed 97.75 km version)
- timeline: prepare a full proposal for the end of 2019 for the European strategy update

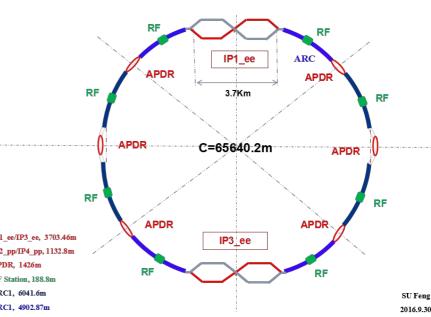



The e+e- colliders


Two options under investigation: Lumi target: 5×10³⁴ cm²/s

1) FPDR: 1 booster to accelerate electrons to the nominal energy, 1 accumulator to store the beams and increase luminosity. Merge at RF entrance to use just one cavity;

2) APDR: use one ring to accelerate both e⁺ and e⁻, separate at IP to reduce beam-beam interactions


APDR suffers from sawtooth effect: orbit changes along the beam line due to synchrotron radiation

ΙΝΓΝ

FPDR: sawtooth can be corrected by tamperng the magnets in the PDR region

In both 1) and 2) add a 3rd 100 km single ring to boost leptons up to the design energy

CEPC Advanced Partial Double Ring Option II

B.

20

The high intensity way

Present SM deviation from flavor:

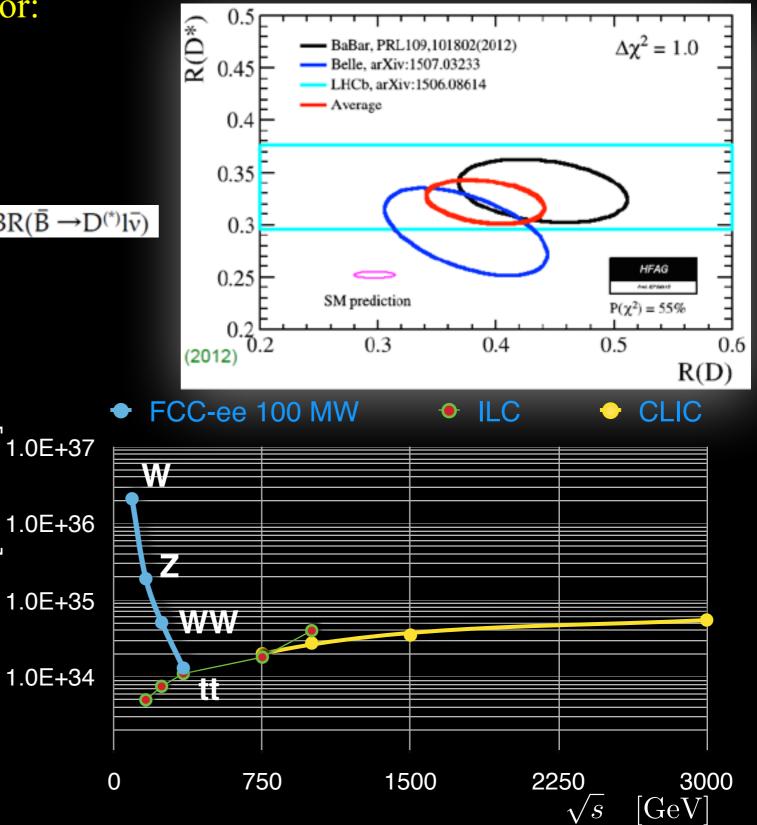
- >LHCb \sim 3.5 σ :
 - $B_d \rightarrow K^{*0} \mu \mu$
 - B_s→ Φµµ

>R(D)

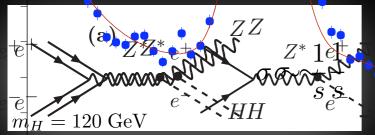
• ~3.9 σ R(D^(*)) = BR($\bar{B} \rightarrow D^{(*)}\tau\bar{v}$)/BR($\bar{B} \rightarrow D^{(*)}l\bar{v}$) (g-2)_µ • > 3 σ

[cm⁻²S⁻¹

Could increase could decrease, what would we learn?

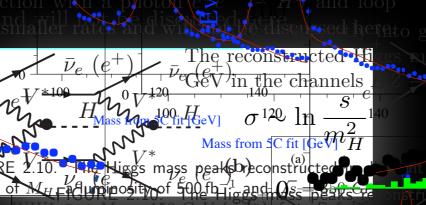

How this would impact our future choices?

The future high intensity way


ILC/CLIC: Higgs factory, W+W- and tt(bar) threshold scan - energy 250 / 500 GeV, possible increase to 1 TeV

FCC-ee (CERN), CepC (China) 100 km circular collider W,Z, Higgs factory, W+W-, ttbar threshold scan

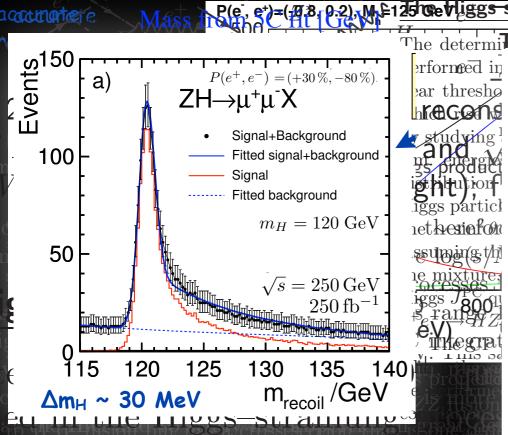
Thanks to F. Bedeschi



(up the liggst strahlung

accountreie

Measuring Higgs couplings



VBF production 201

 $\Theta^+\Theta^-$

new-CEPC will be close to FCC-ee old-CEPC

// *			
e v uggs	s spin	and the	L.70
000	-	- W	

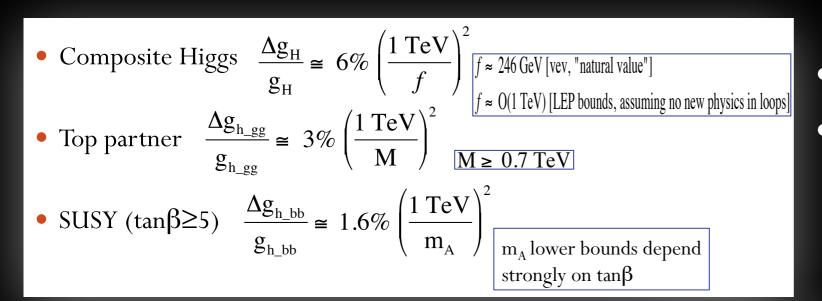
The I	-liggi	pelowewn!	Number of 1	the SM Hi	rgs boson d	s u n also he	+
	Uncertainties	HL-LHC*	μ-	CLIC	ILC**	CEPC	FCC-ee
	m _H [MeV]	40	0.06	40	30	5.5	8
	Г _н [MeV]	-	0.17	0.16	0.16	0.12	0.04
	g нzz [%]	2.0	-	1.0	0.6	0.25	0.15
	g нww [%]	2.0	2.2	1.0	0.8	1.2	0.2
	д ньь [%]	4.0	2.3	1.0	1.5	1.3	0.4
	g _{H^{rr} [%]}	2.0	5	2.0	1.9	1.4	0.5
	д нүү [%]	2.0	10	6.0	7.8	4.7	1.5
	g _{Hcc} [%]	-	-	2.0	2.7	1.7	0.7
	д_{Ндд} [%]	3.0	-	2.0	2.3	1.5	0.8
	g нtt [%]	4.0	-	4.5	18	-	-
	д нµµ [%]	4.0	2.1	8.0	20	8.6	6.2
	д ннн [%]	30	-	24	-	-	-

Estimate for two HL-LHC experiments

** ILC lumi upgrade improves precision by factor 2

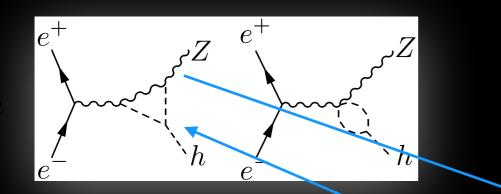
For ~10y operation. Lots of "!,*,?" Every number comes with her own story.

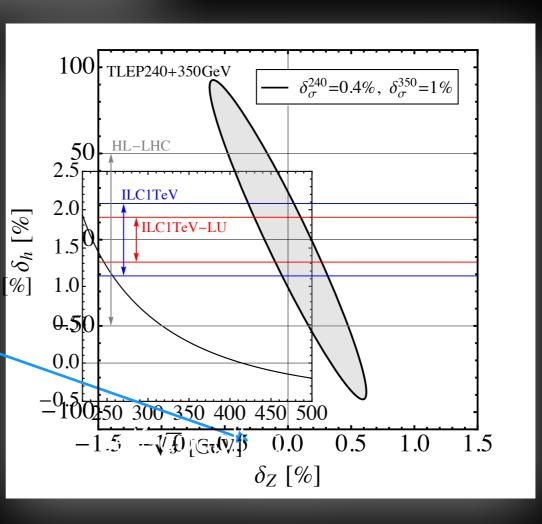
• reconstruct the Higgs mass from the recoiling muons;


- measure the invisible BR with high accuracy
- measure the Higgs width with high accuracy

ril 2017 21 6 **Trieste** JFA ₹-201 Di Micco

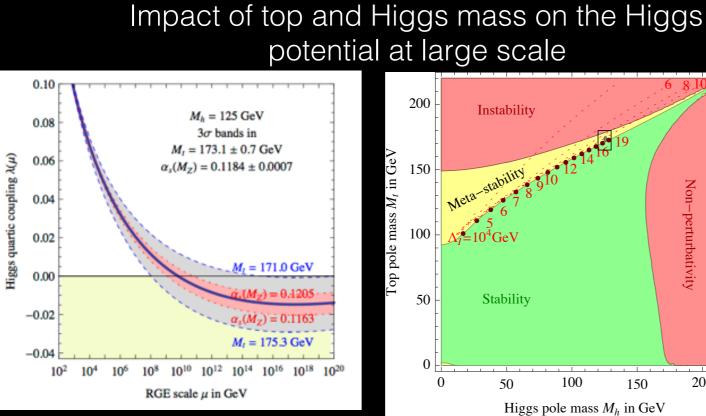
What do we learn from precision?




• New physics typically requires ~% precision.

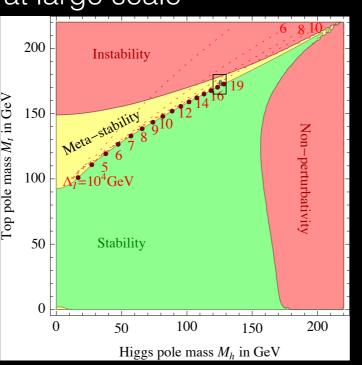
 Per mill (not in the target of HL-LHC) in order to probe scales larger than the direct searches at 14 TeV LHC (going in the range 1- 10 TeV range in new particle mass)

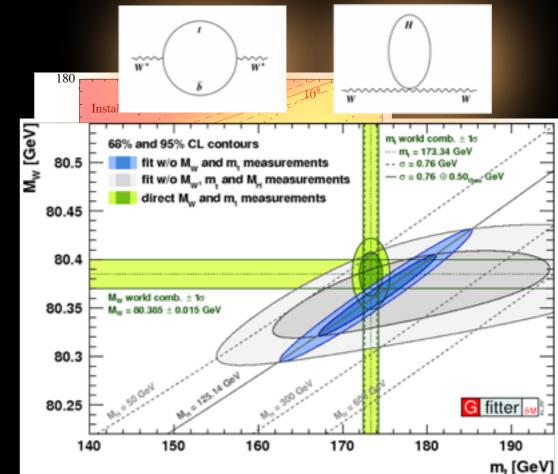
Higgs self-coupling can be measured indirectly with the *Zh* cross section measurement (arXiv:1312:3322)

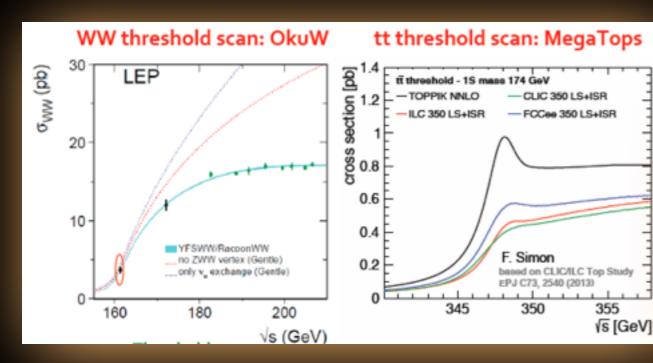


$$V(h) = V(h_0) + \lambda h_0^2 \frac{h^2}{2} + \frac{\lambda}{4} h^4 + \lambda h_0 h^3$$

~ 28% accuracy at FCC-ee, CepC

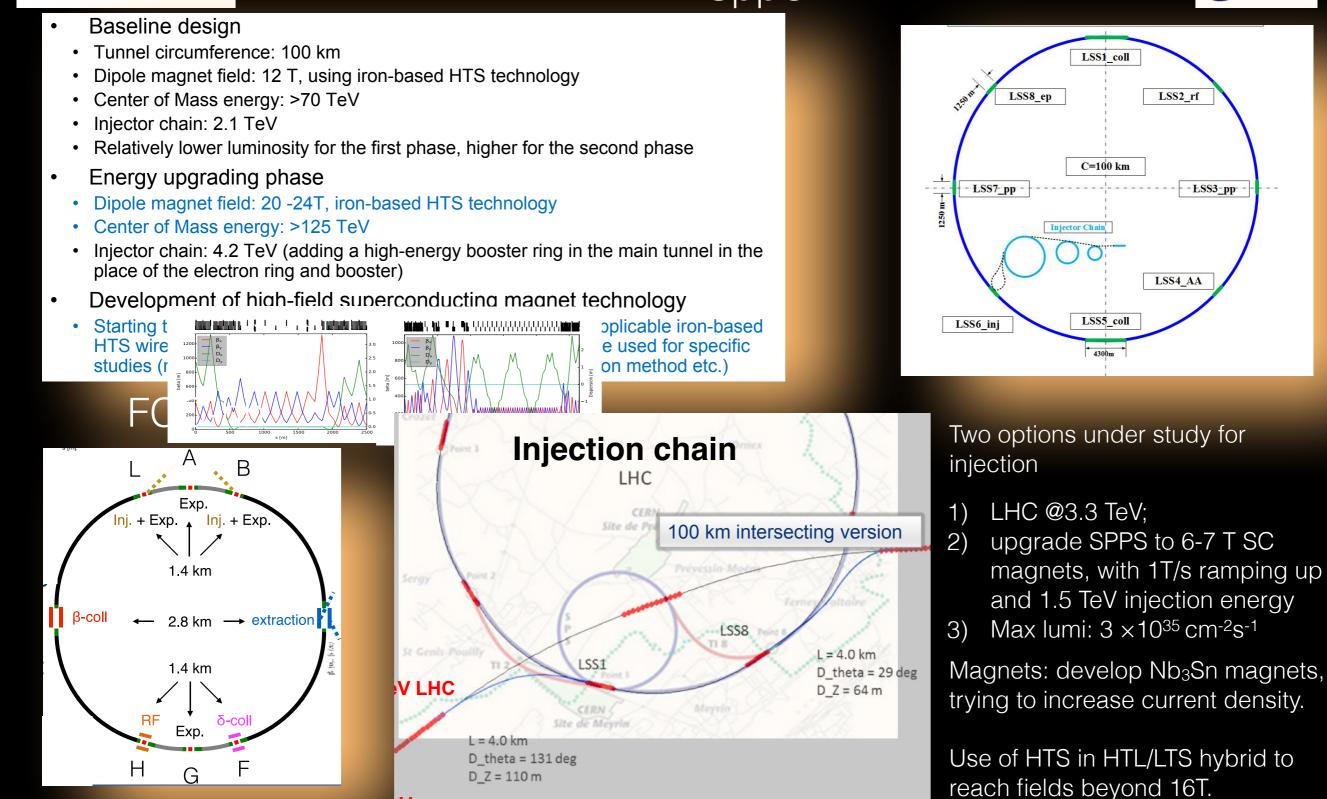



What do we learn from precision?



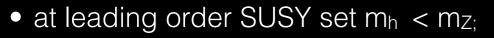
UNIVERSITÀ DEGLI STUD

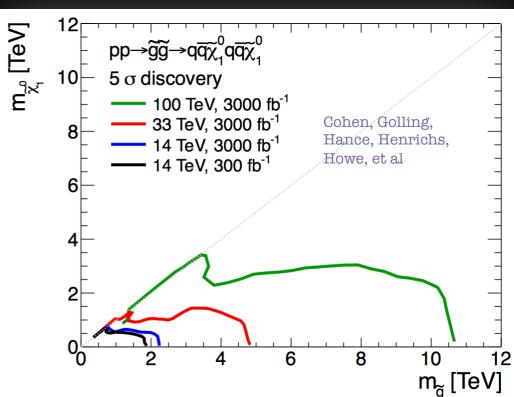
global electroweak fit

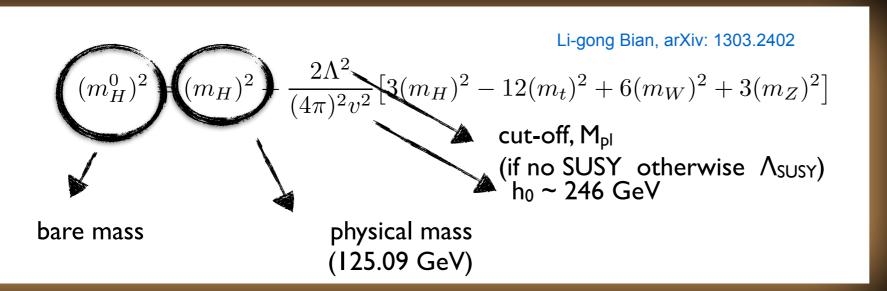

Δm_H ~ 8 MeV @FCC-ee

- Threshold scan m_w to 500 keV (15 MeV) Branching ratios R_µ R_{had} α_c(m_w) to 0.0002 Radiative returns e*e[−]→yZ N., to 0.0004 (0.008)
 - Threshold scan
 - m_{top} to 10 MeV (500 MeV)
 - λ_{top} to 13%
 - Top EW couplings to 1%
- 201 April 21 19 rieste E-201 Micco IFA ja

The hh colliders SppC




placed on top of the e+e- booster


What do we learn from high energy? SUSY

- m_h ~ 125 GeV needs large SUSY rad. corrections through s-quark loops (SUSY scale in the 1-10 TeV range);
- still able to solve the hierarchy problem with a fine tuning at ~ 1%
- if we are lucky, DM could be found in that energy range

Hierarchy problem and fine tuning in few lines

Fine tuning still moves from 10⁻³⁰ to ~ 1%

FCC-hh could be the final word on SUSY

ΙΝΓΝ

Higgs self-coupling

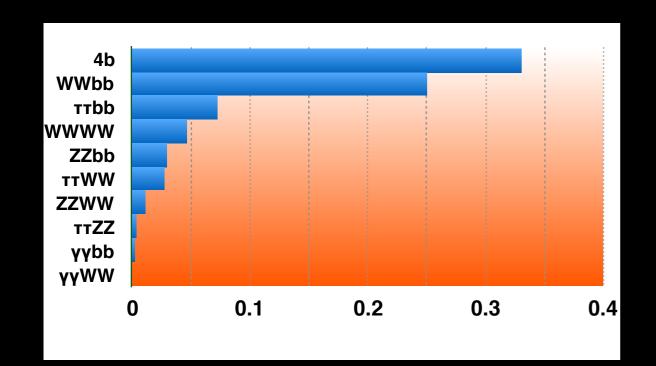
t.b

lleo

t, b

t, b

t, b



self-coupling

UNIVERSITÀ DEGLI STUDI $V(h) = V(h_0) + \lambda h_0^2 \frac{h^2}{2} + \frac{\lambda}{4} h^4 + \lambda h_0 h^3$ hh production mechanism

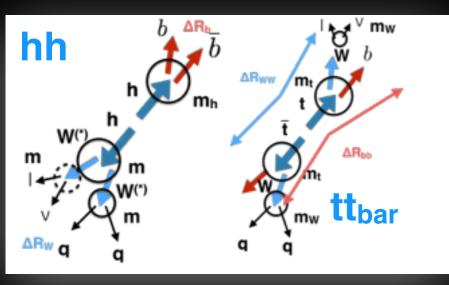
The self-coupling is directly accessible in box $pp \rightarrow hh production$

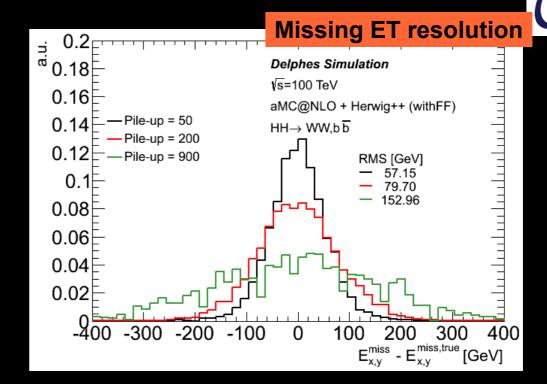
results from the 2016 FCC physics report (30 ab⁻¹)

le

t, b

triangle


	Δσ/σ	Δλ/λ
γγbb	1.3%	2.5%
4b	25% (S/B ~2%)	200%
ZZbb, 4I	~30%	~40%


30 ab⁻¹ is a long FCC run (15 years) need to study more channels to improve the result in order to better constraint the Higgs potential in a shorter time

The WWbb and ZZbb cases

Very different signal and background topologies, they can be exploited with advanced analysis techniques

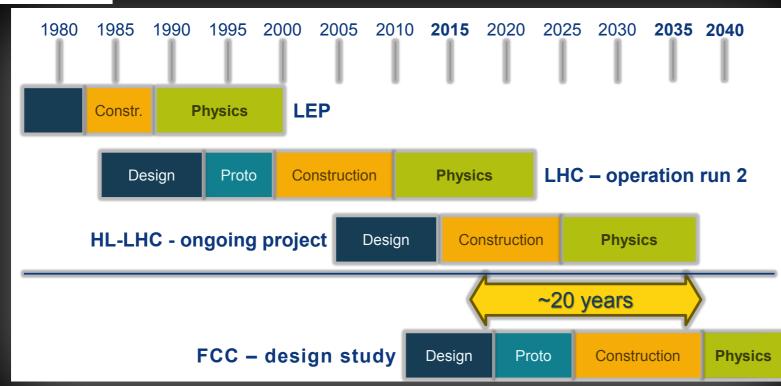
first studies -studies in extreme pile-up conditions

3 ab ⁻¹ PU 200	Object selection	Final selection	ε
hh-WWbb	5.4 · 10 ⁴	273	8.5·10 ⁻⁴
t-t _{bar}	3.6 • 10 ⁹	3.4 · 10⁵	
S/B _{kg}	1.5 · 10⁻⁵	8.0 · 10 ⁻⁴	

WWbb event yield

low S/B pointing to the need of using advanced analysis technique for analysis optimisation

$ZZbb \rightarrow 4I bb$


	σ·L· Br(hh→ZZbb→4lbb)	no b-jet req.	with b-jet	ε (no b-jet)	ε (b-jet)
4μ	161	61	12,1	38%	7,4%
4e	161	40	7,7	25%	4,8%
Tot	322	101	20	31%	6,2%

high impact from b-tagging, at FCC-hh forward detector becomes crucial

ΙΝΓΝ

Timeline of the projects

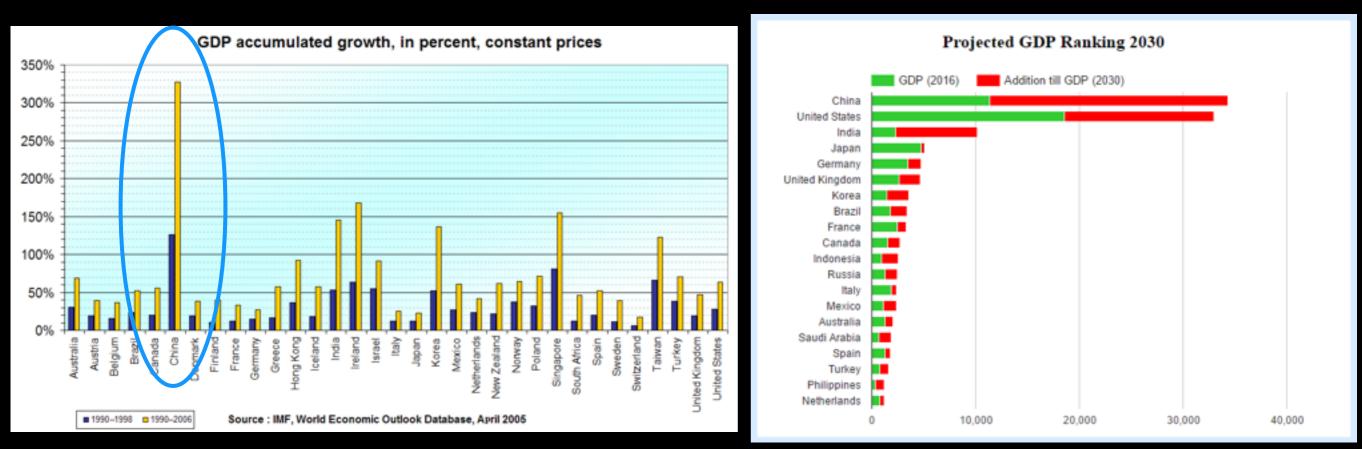
1st Milestone: Pre-CDR (by the end of 2014) ;2nd Milestone: R&D funding from MOST (in Mid 2016); 3rd Milestone: CEPC CDR Status Report (by the end of 2016); 4th Milestone: CEPC CDR Report (by the end of 2017);5th Milestone: CEPC TDR Report and Proto (by the end of 2022);6th Milestone: CEPC construction (by the end of 2030);

FCC approach

give priority to the pp solution, timeline constrained by magnet technology evolution and by HL-LHC timeline

CepC approach

give priority to the e+eoption, use possible pp evolution to add physics motivations



Conclusions and considerations

- 1) I think it is clear that studying the Higgs potential and its self-coupling is the next target of particle physics:
 - 1) it is a no-loose bet, or we find it as in SM or we have something new;
 - it has deep implications on cosmology, in one direction or another (e.g. arXiv: 1505.04825);
- 2) at the moment, the only way to study it with high accuracy is with a 100 TeV pp collider, that's add up new physics search in the unexplored 1-10 TeV range;
- 3) at the moment, we don't have the magnet technology to reach this target: magnet technology development is the primary goal;
- an e+e- option gives enough physics motivation to start building up the structure [just few given in these slides but can make all LEP physics with unprecedented accuracy] (tunnels, cryogenic, infrastructure), but should not delay the pp project when it will be ready to go;
- 5) we cannot build 2 machines like this in the world, need full international support to whoever decides to build it. Italy is collaborating both on CepC/SppC and FCC [trying to strength international collaboration, pushing chinese contribution to HL-LHC to have CERN support on CepC/SppC in return]

Year	Real GWP (\$ billions, 1990 intl\$)	Compound annual growth rate
2014 AD	77,868 ^[2]	
2010 AD	62,220 (est. 41,090 in 1990 U.S. dollars) ^[6]	
2005 AD	43,070 (est. 31,300 in 1990 U.S. dollars) [citation needed]	
2000 AD	41,016.69	4.04%
1995 AD	33,644.33	4.09%
1990 AD	27,539.57	4.14%
1985 AD	22,481.11	3.62%
1980 AD	18,818.46	4.43%

Riguardo ai fondi di R&D la situazione e' la seguente:

- IHEP seed money (2015-2017): 11 Mrmb

- MOST (Ministry of Science/Technology) (2016): 36 Mrmb (additional 10 Mrmb expected in 2017)

- CAS (Chinese Academy of Science), Beijing Inn. fund, talent program: ~ 50 Mrmb

1 Mrmb ~ 135 k€ Totale finanziato finora ~ 100 Mrmb ~ 13.5 M€

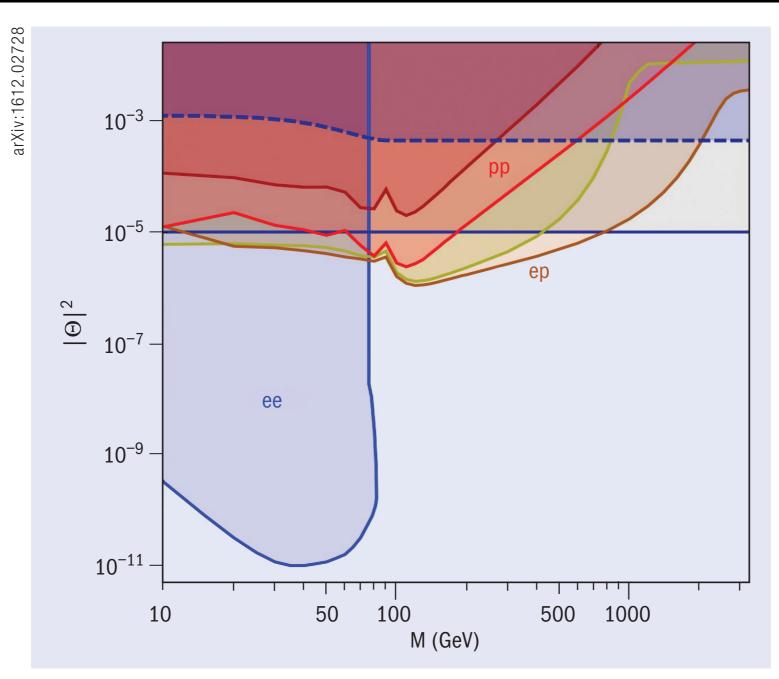
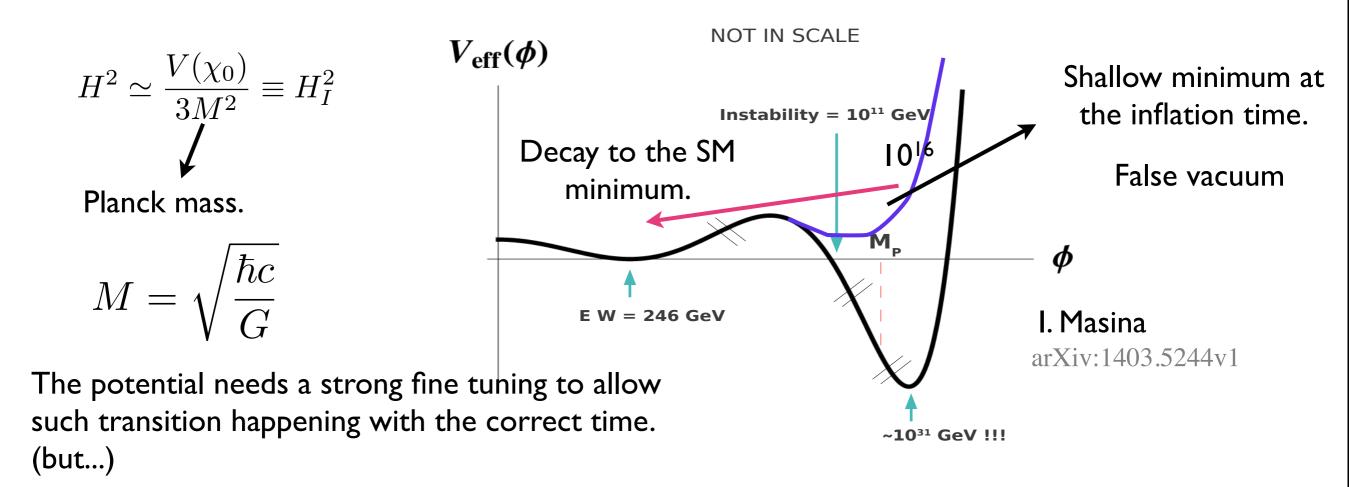


Fig. 2. The complementary role of the ee, pp and ep colliders in probing a sterile neutrino of mass M and mixing angle θ with ordinary neutrinos.

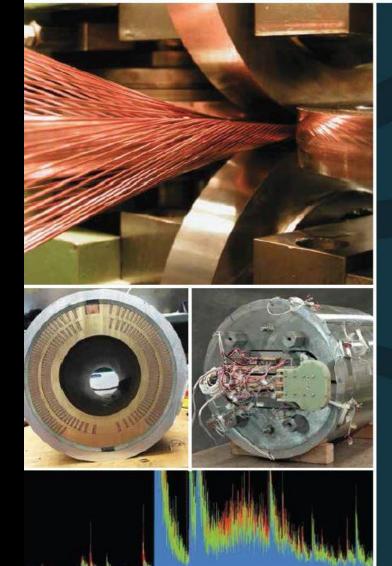
Exponential expansion

Assuming $\rho = \rho_0 = \text{constant.}$ And setting:


 $H_0 = \sqrt{\frac{8\pi G}{2}\rho_0 + \frac{\Lambda c^2}{2}}$

$$H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{\ddot{a}}{a} = \frac{8\pi G}{3}\rho + \frac{\Lambda}{3}$$

The non autocollapsing solution is:


$$a(t) = a(0)e^{H_0 t}$$

Exponential expansion producing the universe inflation. The condition $p=-\rho c^2$ is fullfilled by the rest energy of a scalar field.

The U.S. Magnet Development Program Plan

S. A. Gourlay, S. O. Prestemon Lawrence Berkeley National Laboratory Berkeley, CA 94720

A. V. Zlobin, L. Cooley Fermi National Accelerator Laboratory Batavia, IL 60510

D. Larbalestier Florida State University and the National High Magnetic Field Laboratory Tallahassee, FL 32310

JUNE 2016

Program (MDP) Goals:

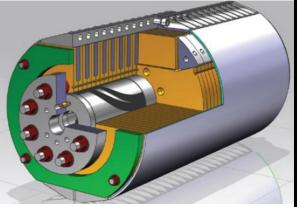
GOAL 1:

Explore the performance limits of Nb₃Sn accelerator magnets with a focus on minimizing the required operating margin and significantly reducing or eliminating training.

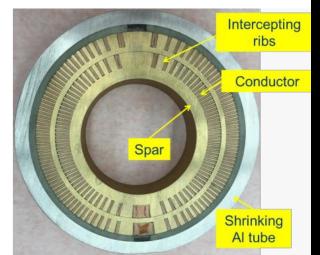
GOAL 2:

Develop and demonstrate an HTS accelerator magnet with a self-field of 5 T or greater compatible with operation in a hybrid LTS/HTS magnet for fields beyond 16 T.

GOAL 3:


Investigate fundamental aspects of magnet design and technology that can lead to substantial performance improvements and magnet cost reduction.

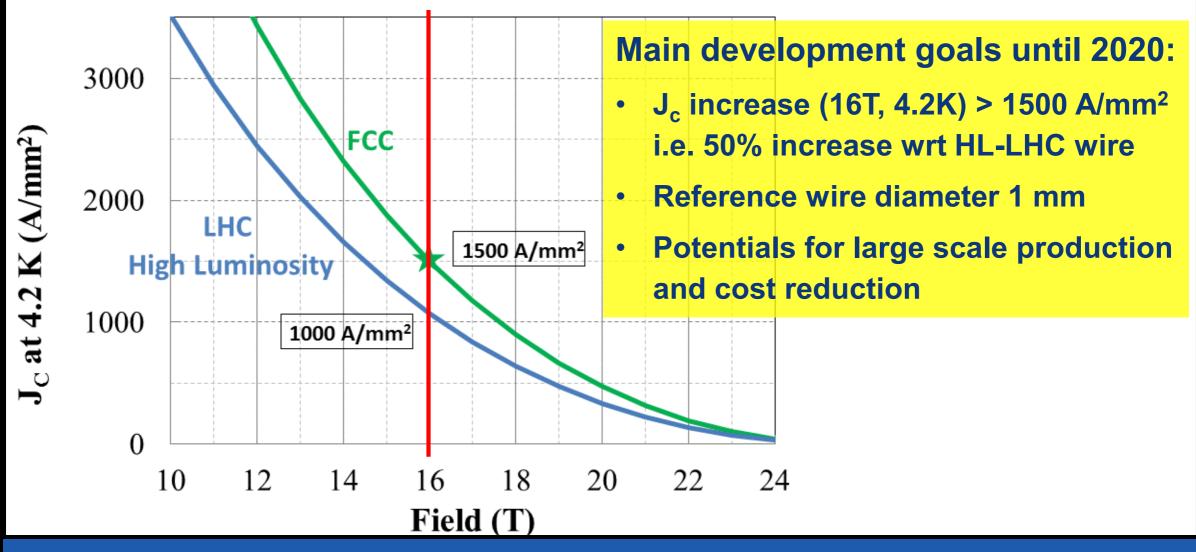
GOAL 4:

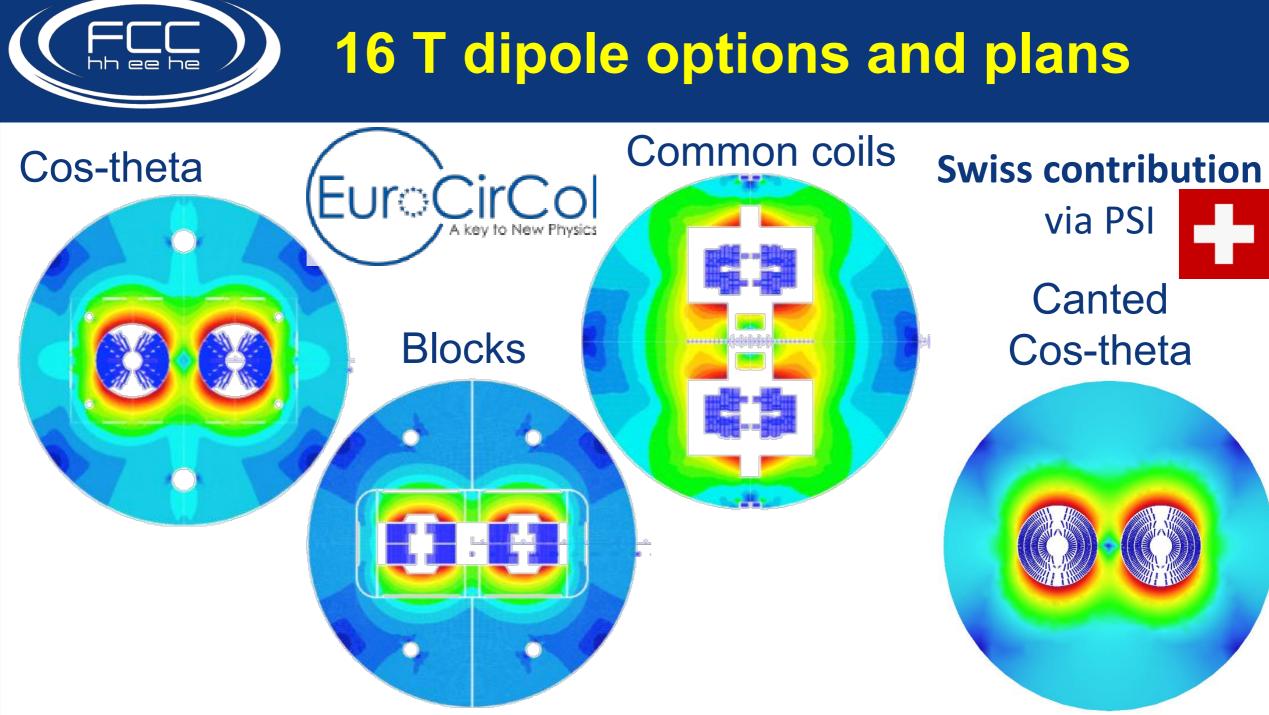

Pursue Nb₃Sn and HTS conductor R&D with clear targets to increase performance and reduce the cost of accelerator magnets.

Under Goal 1:

16 T cos theta dipole design

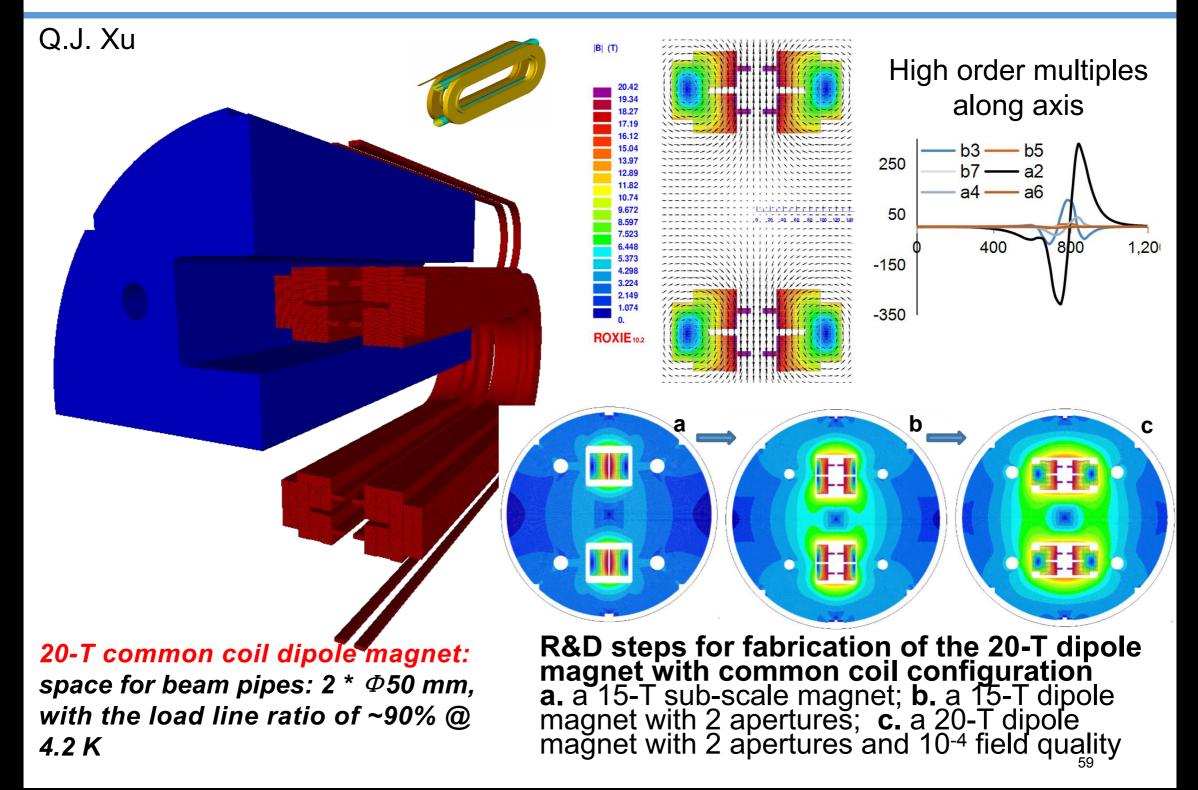
16 T canted cos theta (CCT) design




Nb₃Sn conductor program

Nb₃Sn is one of the major cost & performance factors for

FCC-hh and requires highest attention



- Down-selection of options mid 2017 for detailed design work
- Model production 2018 2022
- Prototype production 2023 2025

SppC 20T Nb₃Sn+HTS SC Dipole Conceptual Design

