Nuclear medium studies using DIS experiments with CLAS/CLAS12 at JLab, present and future

Hayk Hakobyan
Universidad Técnica Federico Santa Maria

QCD@Work, Matera, Italy June, 2018

Thomas Jefferson National Accelerator Facility (Jefferson Lab / JLab)

Jefferson Lab

International community of 2000 users, which studies the matter as a structure of quarks and gluons

Based on superconductivity, CEBAF accelerator produces a high quality electron beam with 100% duty factor, now with energies up to 12 GeV.

The unique design of the CEBAF accelerator permits simultaneous delivary of a high quality electron beam to four experimental halls.

The CEBAF upgrade from 6 GeV to 12 GeV

Experimental Hall B with CLAS

CLAS Eg2 experimental target

H. Hakobyan, W. Brooks et al, Nucl. Instrum. and Meth. A592:218-223, 2008.

D, cell in GEANT

Real CLAS data

Liquid target empty

Liquid target full

Studies performed with CLAS Eg2 double-target

- Nuclear Hadronization
- Color transparency
- Short range nuclear correlations
- Two hadron correlations
- EMC effect measurements
- Hadronic structure function measurements in nuclei
- Etc.

Some results of π^+ , π^- , π^0 and η hadronization studies

Schematic diagram of semi-inclusive Deep Inelastic Scattering of a lepton off a nucleon

Experimental Variables

```
\mathbf{Q}^2 = -q^2 four-momentum transferred by the electron (1-4)GeV<sup>2</sup>;

\mathbf{v} = E - E' (lab) energy transferred by the electron (1-4.2)GeV;

\mathbf{z} = E_h / v fraction of initial quark energy carried by hadron;

\mathbf{p}_T hadron momentum transverse to \mathbf{y}^* direction;

\mathbf{q} angle between leptonic and hadronic planes
```

CLAS/DIS kinematics: Q²>1 GeV², W >2 GeV; 0.1<x<0.55 Ebeam=5GeV

Experimental observables

Transverse momentum broadening:

$$\Delta p_T^2 = p_T^2(A) - p_T^2(^2H)$$

Hadronic multiplicity ratio:

$$R_{M}^{h}(z,\nu,p_{T}^{2},Q^{2},\phi) = \frac{\left\{\frac{N_{h}^{DIS}(z,\nu,p_{T}^{2},Q^{2},\phi)}{N_{e}^{DIS}(\nu,Q^{2})}\right\}_{A}}{\left\{\frac{N_{h}^{DIS}(z,\nu,p_{T}^{2},Q^{2},\phi)}{N_{e}^{DIS}(\nu,Q^{2})}\right\}_{D}}$$

Kopeliovich, Nemchik, Predazzi, Hayashigaki, Nuclear Physics' A 740 (2004) 211–245

Two distinct dynamical stages, each with characteristic time scale

Production time t

Formation time t_f

Time during which quark emits gluons is deconfined. Signaled by medium-stimulated energy loss via gluon emission: (p_T) broadening

Time required to form
color field of hadron
Signaled by interactions with
known hadron cross sections
No gluon emission
(Hadron attenuation)

The production and formation of the final hadron, inside or outside?

Transverse momentum dependence on 1/3 of nuclear mass number (all together in 24 kinematical region)

Transverse momentum dependence on 1/3 of nuclear mass number (all together in 24 kinematical region)

Hadronic multiplicity ratio dependence on z in different kinematical regions

Hadronic multiplicity ratio dependence on z in different kinematical regions

Hadronic multiplicity ratio dependence on z in different kinematical regions

Eta particle contains strange quarks!

π^0 DECAY MODES	Fraction (Γ_i/Γ)	η DECAY MODES	Fraction (Γ_i/Γ)
2γ	(98.823±0.034) %	/ ₀	Neutral modes
$e^+e^-\gamma$	(1.174 ± 0.035) %	neutral modes	(72 12±0 34)

By Orlando Soto

charged modes $\pi^{+}\pi^{-}\pi^{0}$ $\pi^+\pi^-\gamma$

al modes

 $(72.12\pm0.34)\%$ $(39.41\pm0.20)\%$ $(32.68\pm0.23)\%$

Charged modes

 $(28.10\pm0.34)\%$ $(22.92\pm0.28)\%$ $(4.22\pm0.08)\%$

Eta particle contains strange quarks!

•			•
π^0 DECAY MODES	Fraction (Γ_i/Γ)	η DECAY MODES	Fraction (Γ_i/Γ)
2γ	(98.823±0.034) 9	/ 6	Neutral modes
$^{2\gamma}_{e^+e^-\gamma}$	(1.174 ± 0.035)	neutral modes	(72.12 ± 0.34)
		$rac{2\gamma}{3\pi^0}$	(39.41 ± 0.20)
		$3\pi^0$	(32.68 ± 0.23)
			Charged modes
By Orland	la Cata	charged modes	(28.10 ± 0.34) $^{\circ}$
		\perp $ 0$	

 $\pi^+\pi^-\gamma$

modes

 $72.12\pm0.34)\%$ $39.41 \pm 0.20) \%$ $32.68 \pm 0.23)$ %

modes

 $28.10\pm0.34)$ % $(22.92\pm0.28)\%$ $(4.22\pm0.08)\%$

Multiplicity Ratio $\eta \rightarrow 2\gamma / \eta \rightarrow \pi^+ \pi^- \pi^0$ on Iron

Integrated multiplicity ratio dependence on z and Pt2 for π^0 and η

Experiments with CLAS12

CLAS12

L=10³⁵ cm⁻²s⁻¹

		(GeV)	content	channel	per 1k DIS events
π^0	25 nm	0.13	$u\bar{u}d\bar{d}$	$\gamma\gamma$	1100
π^0 π^+	7.8 m	0.14	$u ar{d}$	direct	1000
π^-	7.8 m	0.14	$d\bar{u}$	direct	1000
η	0.17 nm	0.55	$u\bar{u}d\bar{d}s\bar{s}$	$\gamma\gamma$	120
ω	23 fm	0.78	$u\bar{u}d\bar{d}s\bar{s}$	$\pi^{+}\pi^{-}\pi^{0}$	170
η'	$0.98~\mathrm{pm}$	0.96	$u\bar{u}d\bar{d}s\bar{s}$	$\pi^+\pi^-\eta$	27
ϕ	44 fm	1.0	$u\bar{u}d\bar{d}s\bar{s}$	K^+K^-	0.8
$\begin{array}{c} \phi \\ f1 \\ K^+ \end{array}$	8 fm	1.3	$u\bar{u}d\bar{d}s\bar{s}$	$\pi\pi\pi\pi$	-
K^+	$3.7 \mathrm{m}$	0.49	$u\bar{s}$	direct	75
K^-	$3.7 \mathrm{m}$	0.49	$\bar{u}s$	direct	25
K^{0}	27 mm	0.50	$d\bar{s}$	$\pi^+\pi^-$	42
p	stable	0.94	ud	direct	530
$ar{p}$	stable	0.94	$ar{u}ar{d}$	direct	3
Λ	79 mm	1.1	uds	$p\pi^-$	72
$\Lambda(1520)$	13 fm	1.5	uds	$p\pi^-$	-
Σ^+	24 mm	1.2	us	$p\pi^{0}$	6
Σ^{0}	22 pm	1.2	uds	$\Lambda\gamma$	11
Σ^{0}	With new	Eg2 ta	rget, des	signed an	d built in UTFSM

us

IXN

flavor

mass

1.0

49 IIIII

hadron

 $c\tau$

detection

Production rate

U. 3

Extreme Conditions for the New Target

- High Vacuum (6x10E-6 mbar)
- Magnetic Field (5 Tesla)
 Non-magnetic materials
- Cryotarget (30 °K)
 Low temperature resistant
- Radiation Hardness
- Reduced space

The problem to solve is to generate precise movement (to exchange targets) in these extreme conditions.

Types of Solid Targets

Properties of the solid targets

Target	Longitudinal thickne	Transverse thickness		
	Dimension	Areal density (g/cm ²)	Radiation lengths	Areal density (g/cm²)
Carbon	1.7 mm	0.38	0.009	0.33
Thin Aluminum	15 μm	0.00	0.000	0.41
Thick Aluminum	0.58 mm	0.16	0.007	0.41
Iron	0.40 mm	0.31	0.023	1.2
Tin	0.31 mm	0.23	0.026	1.1
Lead	0.14 mm	0.16	0.025	1.7

Diameter: 3 mm

New targets types will include: 4He, C, O, Ar, Pb and others. Unfortunately no Fe.

Materials for Cryocell fabrication

Full Assembly

Solid Target 1:1 working model

BAND (Back Angle Neutron Detector)

(Mechanical design by Iñaki Vega, Milan Ungerer) With colleagues from MIT, TAU & ODU

EIC (Electron-Ion collider)

RHIC

JLab

Conclusions!

CLAS experiment with double target opened a large spectra of studies like:

- Nuclear Hadronization
- Color transparency
- Short range nuclear correlations
- Two hadron correlations
- •EMC effect measurements
- Hadronic structure function measurements in nuclei
- •Etc.

More is coming with new CLAS12 and new double target!