Expectations for first measurements of top-antitop pair-production using early CMS data

Anne-Catherine Le Bihan

IPHC-CNRS, Strasbourg, on behalf of the CMS collaboration

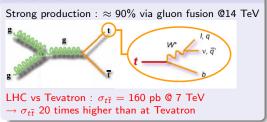
BEACH2010, Perugia, Italy

Image: A mathematical states and a mathem

A.-C. Le Bihan (IPHC-CNRS)

First top-antitop measurements in CMS

Main top interests at the LHC

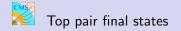

The LHC is a top factory !

Main interests are :

- top rediscovery
- top as calibration tool : jet energy scale, b-tagging efficiency
- precision tests of the Standard Model
- new physics searches

The top quark is the heaviest quark of the SM : may have a particular coupling to new physics !

Top pair production @ LHC



Single top production @ LHC

Electroweak production

allows a direct measurement of the Wtb coupling $\sigma_t \approx 1/3\sigma_{t\bar{t}}$

Top-antitop final states :

- di-leptonic channel (e/µ) :
 9% of total, low statistics, but clean signature with isolated leptons
- semi-leptonic channel : 45% of total, reconstruction of top mass
- hadronic channel :

```
46% of total,
```

high multi-jet background, not for early data

イロト 不得下 イヨト イヨト

A.-C. Le Bihan (IPHC-CNRS)

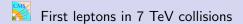
BEACH2010 3 / 18

Analysis strategies for first measurements

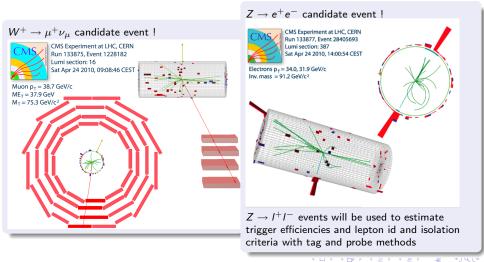
Focus on di-leptonic and semi-leptonic channels

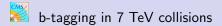
Analysis strategy :

- unprescaled single lepton triggers
- use of b-tag and MET with caution
- data driven background estimates \rightarrow multi-jets and W/Z+jets have large uncertainties @ LHC


Main backgrounds are :

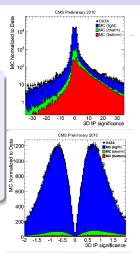
- multi-jet events
 → jets faking leptons
- W+jets
 → isolated lepton, MET, jets
- $\bullet~Z{+}jets,~dibosons \rightarrow di{-}lepton~channel$


イロト 不得下 イヨト イヨト


single top

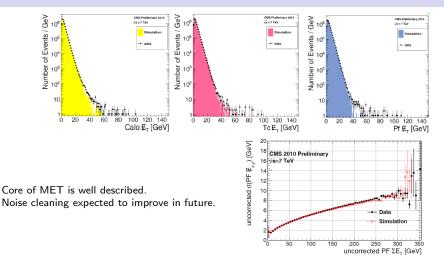
All results shown in the next slides are 10-14 TeV \rightarrow strategy remains valid @ 7 TeV

First electron and muon candidates from electroweak processes in 7 TeV collision data !

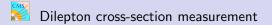


b-tagging is a key ingredient of top physics !

Signed 3D impact parameter significance for all tracks selected for b-tagging for jets with $p_T > 40 GeV$ and $|\eta| < 1.5$

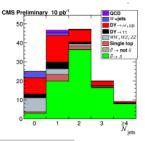

Data : $\approx 0.9 \text{ nb}^{-1}$ @ $\sqrt{s} = 7 TeV$

Simulation : combination of minimum bias data and QCD samples


Good agreement seen for b-tagging observables between data and simulation : b-tagging might be used in early data !

🎽 Transverse missing energy in 7 TeV collisions

All CMS results : https://twiki.cern.ch/twiki/bin/view/CMS/PublicPhysicsResults


A.-C. Le Bihan (IPHC-CNRS)

• Robust event selection :

2 opposite charged isolated leptons $p_T > 20 GeV$ Z mass veto, > 2 jets $p_T > 30 GeV$ MET > 20 (30) GeV

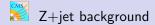
- Alternative selection : b-tagging, use of track-jets
- Prospects to measure cross-section ratio : $\sigma(t\bar{t})/\sigma(Z+X) = N(t\bar{t})\epsilon(Z)/N(Z)\epsilon(t\bar{t})$
 - \rightarrow luminosity uncertainty cancellation

	Main selection		
Data sample	e ⁺ e ⁻	$\mu^+\mu^-$	$e^{\pm}\mu^{\mp}$
$t\bar{t} \rightarrow \ell \ell$		13.2 ± 0.2	35.6 ± 0.4
Single top	0.46 ± 0.03	0.56 ± 0.03	1.40 ± 0.06
DY+jets	4.4 ± 0.4	5.6 ± 0.4	0.8 ± 0.2
Others	0.67 ± 0.11	0.37 ± 0.03	1.5 ± 0.1
Total backgrounds	5.5 ± 0.4	6.6 ± 0.4	3.7 ± 0.2
Data driven fakes	1.1 ± 0.6	0.8 ± 0.4	2.5 ± 1.2
Data driven DY	4.0 ± 1.3	5.1 ± 1.6	

Expected cross-section precision, 10 pb⁻¹, $\sqrt{s} = 10 TeV$: $\Delta \sigma / \sigma = \pm 15\%(stat) \pm 10\%(sys) \pm 10\%(lumi)$

- 10 pb⁻¹ : use multi-jet sample dominated by fake leptons. Select leptons with relaxed lepton id and isolation. Apply the tight selection and define a fake rate. Estimated uncertainty \approx 30 %
- 100 pb⁻¹ : Matrix method : Define 3 sub-samples for each level of lepton isolation (loose, medium, tight)
 - N_s events containing 2 real leptons (signal like)
 - N_W events containing 1 real lepton (W+jets like)
 - N_{QCD} events containing 2 fake isolated leptons (QCD like)

System of three equation allows to solve the three unknowns N_s^l , N_W^l , N_{OCD}^l

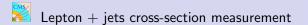

$$\begin{split} N^t &= \varepsilon_S^{l \to t} N_S^l + \varepsilon_W^{l \to t} N_W^l + \varepsilon_{QCD}^{l \to t} N_{QCD}^l, \\ N^m &= \varepsilon_S^{l \to m} N_S^l + \varepsilon_W^{l \to m} N_W^l + \varepsilon_{QCD}^{l \to m} N_{QCD}^l, \\ N^l &= N_S^l + N_W^l + N_{QCD}^l. \end{split}$$

Leading to the number of signal, W+jets and QCD events :

$$N_{S}^{t} = \epsilon_{I}^{I \to t} N_{S}^{I}, \ N_{W}^{t} = \epsilon_{I}^{I \to t} N_{W}^{I}, \ N_{QCD}^{t} = \epsilon_{I}^{I \to t} N_{QCD}^{I}$$

Estimated uncertainty for W+jets events : 20% with 100 pb^{-1}

A.-C. Le Bihan (IPHC-CNRS)

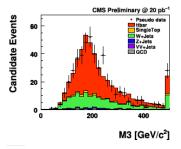


Use the ratio of events inside/outside the Z mass window :

- Select events with low MET<20 GeV
- Assume dominated by Z+jets events
- Count the number of events outside the Z window : N_{tails}
- Rescale N_{tails} :
 - ▶ fit *M*_{*II*} (MET>50 GeV) by a Breit-Wigner + polynomial
 - use maximum of Breit-Wigner to determine the scale factor

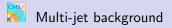
Estimated uncertainty $\approx 30\%$

(a)

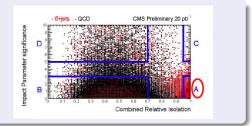

• Simple event selection :

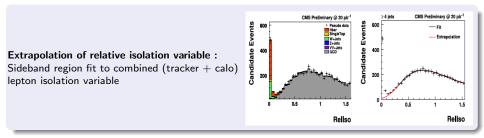
Exactly one isolated lepton $p_T(\mu/e) > 20/30 \, GeV$, >= 4 jets, no MET, no b-tag !

• Cross-section measurement : Fit discriminating variables M3, M3' or $\eta(\mu)$ 3 templates : $t\bar{t}$, single-top, W+jets


 $\begin{array}{l} M3: \mbox{ inv. mass of 3 jets with highest } \Sigma p_T \\ \approx \mbox{ hadronic top mass} \\ M3': \ \chi^2 \ \mbox{sorted M3 using W mass and MET} \\ \eta(\mu): \ \mbox{ smallest sys, less sensitive to JES} \end{array}$

• Prospects to measure cross-section ratio : $\sigma(t\bar{t})/\sigma(W+X) = N(t\bar{t})\epsilon(W)/N(W)\epsilon(t\bar{t})$

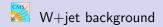

e+jet channel : larger level of multi-jet bkg (photon conversions) Possible options : conversion removal, MET cut, central electron



Quadrant method :

 $\sigma(IP_{\mu})$ and μ isolation are two independent discriminating variables Number of QCD events in signal region A : $N_A = N_B N_C / N_D$

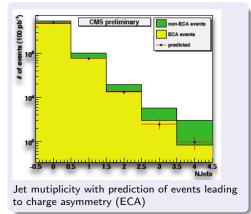
イロト イロト イヨト イヨト



50 % uncertainty conservatively assumed for both methods

A.-C. Le Bihan (IPHC-CNRS)

First top-antitop measurements in CMS


BEACH2010 12 / 18

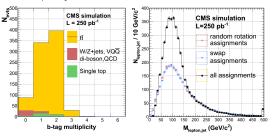
Use the W charge asymmetry (> 100 pb⁻¹):

- Measure the difference of lepton to anti-lepton in candidate events
- Estimate the number of W+jet events

 $N^+ + N^- = R_{\pm}(N^+ - N^-)$ $R_{\pm} = (N_{W^+} - N_{W^-})/(N_{W^+} + N_{W^-})$ R_{\pm} is taken from simulation

イロト イロト イヨト イヨト

Estimated precision is 30 % in 100 pb^{-1} , error mostly statistical, PDF systematics to be evaluated


Measurement of $R = BR(t \rightarrow Wb)/BR(t \rightarrow Wq)$

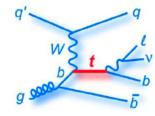
Expect $R = BR(t \rightarrow Wb)/BR(t \rightarrow Wq) \approx 1 \text{ (q = d, s, b)}$

Use e μ events : clean $t\overline{t}$ sample (bkg < 10 %)

The number of observed b-jets depends on R, b-tag efficiency ϵ_b and on jet misassignment Jet misassignment : top events with missing and/or fake b-jets...

 \rightarrow extracted from data : $M_{lepton-jet}$ fit

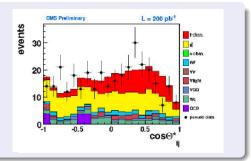
Fix ϵ_b or R and fit R or ϵ_b :

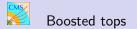

Expect *R* with $\pm 2\%(stat) \pm 9\%(sys \ from \epsilon_b) \pm 3\%$, 250 pb⁻¹, $\sqrt{s} = 10$ TeV Or alternatively expect $\epsilon_b \approx \pm 2\%(stat) \pm 4\%(sys)$ assuming R = 1

A.-C. Le Bihan (IPHC-CNRS)

Single top (t channel)

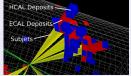
Analysis strategy : One isolated μ and lepton veto two jets far from μ one b jet, 2nd jet must fail b-tag $M_T > 50$ GeV (on-shell W, anti-QCD) top reconstruction

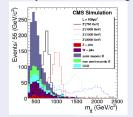



Single top cross-section : fit to polarization angle and/or charge

asymmetry

Sensitivity : 2.7 σ for 200 pb^{-1} , $\sqrt{s} = 10 TeV$


S/B=0.45 (t channel =102, ttbar=136, tW channel=22, QCD=12, W+x=50)


Several BSM extensions predict contributions to top-pair production \rightarrow distorted $M_{t\bar{t}}$ spectrum w.r.t. SM

Search for boosted hadronic tops : decay products end up in monojets with substructure

Selection : 2 monojets with $p_T > 250 \text{ GeV}$

100 pb⁻¹, 10 TeV: $M_{t\bar{t}}$ =2 (3) TeV Discovery up to $\sigma \times$ BR = 4.0 (1.6) pb Exclusion @ 95% CL up to 1.5 (0.7) pb Search for $t\bar{t}$ resonances in semi-leptonic channel, 2 analyses : @ low and high masses

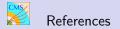
Standard analyses with specific cuts : relaxed isolation criteria, high p_T jets... 100 pb⁻¹, 10 TeV: $M_{t\bar{t}}$ =2 TeV Exclusion @ 95% CL up to 9 pb

Top ingredients (leptons, jets, b-tagging, MET) in good shape @ 7 TeV.

10 TeV cross-section measurement stategies remain valid @ 7 TeV.

Expect first cross-section measurement with 10 pb⁻¹ @ 7 TeV :

- Dilepton : $\approx 25 t\overline{t}$
- $e + jets : \approx 40 t\overline{t}$
- μ + jets : \approx 70 $t\bar{t}$
- \rightarrow Concentrate on background estimates from data
- \rightarrow Possible use of b-tagging


Refined measurements with 50-500 pb^{-1} :

Fully hadronic channel and tau final states, observation of single-top, JES calibration and b-tag efficiencies, first mass measurements, high mass resonances...

Precision top-quark physics with >**500 pb**⁻¹ : Rare decays, helicity and spin correlations...

Exciting top physics program ahead of us !

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- CMS PAS TOP-09-001
- CMS PAS TOP-09-002
- CMS PAS TOP-09-003
- CMS PAS TOP-09-004
- CMS PAS EXO-09-002
- CMS PAS EXO-09-008

• ...

イロト イヨト イヨト イヨト