$K \rightarrow \pi \pi$ Decays and the $\Delta I=1 / 2$ rule

Nicolas Garron

Plymouth University

Chiral Dynamics 2015
Pisa
June 29, 2015

A warning: not a review talk

- This topic has long history, a lot of work has been done (effective theories, lattice and more)
- I only present here the work done by RBC and UKQCD collaborations
- Apologies if I don't mention your work or your favorite computation

Outline

- Introduction: $K \rightarrow \pi \pi$ and CP violation
- Overview of the computation
- $K \rightarrow(\pi \pi)_{I=2}$ channel
- $K \rightarrow(\pi \pi)_{I=0}$ channel
- Emerging understanding of the $\Delta I=1 / 2$ rule

$K \rightarrow \pi \pi$ and CP violation

Background: Kaon decays and CP violation

- First discovery of CP violation was made in kaon system in 1964 (Christenson, Cronin, Fitch and Turlay)
- Noble prize in 1980 (Cronin and Fitch)
- Direct CP violation discovered in kaon decays [NA31, KTeV, NA48, '90-99]
- Very nice measurements of both direct and indirect CP violation (numbers from [PDG 2011])
$\left\{\begin{array}{c}\text { Indirect }|\varepsilon|=(2.228 \pm 0.011) \times 10^{-3} \\ \text { Direct } \operatorname{Re}\left(\frac{\varepsilon^{\prime}}{\varepsilon}\right)=(1.65 \pm 0.26) \times 10^{-3}\end{array}\right.$
- Theoretically:

Relate indirect $C P$ violation parameter (ε) to neutral kaon mixing (B_{K})
Still lacking a quantitative description of direct $C P$ violation $\left(\varepsilon^{\prime}\right)$

- Sensitivity to new physics expected

Background: Kaon decays and CP violation

Flavour eigenstates $\binom{K^{0}=\bar{s} \gamma_{5} d}{\bar{K}^{0}=\bar{d} \gamma_{5} s} \neq \mathrm{CP}$ eigenstates $\left|K_{ \pm}^{0}\right\rangle=\frac{1}{\sqrt{2}}\left\{\left|K^{0}\right\rangle \mp\left|\bar{K}^{0}\right\rangle\right\}$

They are mixed in the physical eigenstates $\left\{\begin{array}{rll}\left|K_{L}\right\rangle & \sim\left|K_{-}^{0}\right\rangle+\bar{\varepsilon}\left|K_{+}^{0}\right\rangle \\ \left|K_{S}\right\rangle & \sim\left|K_{+}^{0}\right\rangle+\bar{\varepsilon}\left|K_{-}^{0}\right\rangle\end{array}\right.$

Direct and indirect CP violation in $K \rightarrow \pi \pi$

$$
\left|K_{L}\right\rangle \propto\left|K_{-}\right\rangle+\varepsilon\left|K_{+}\right\rangle
$$

$$
\varepsilon=\frac{A\left(K_{L} \rightarrow(\pi \pi)_{I=0}\right)}{A\left(K_{S} \rightarrow(\pi \pi)_{I=0}\right)}=|\varepsilon| e^{i \phi_{\varepsilon}} \sim \bar{\varepsilon}
$$

$K \rightarrow \pi \pi$ amplitudes

Two isospin channels: $\Delta I=1 / 2$ and $\Delta I=3 / 2$

$$
K \rightarrow(\pi \pi)_{\mathrm{I}=0,2}
$$

Corresponding amplitudes defined as

$$
A\left[K \rightarrow(\pi \pi)_{\mathrm{I}}\right]=A_{\mathrm{I}} \exp \left(i \delta_{\mathrm{I}}\right) \quad / \mathrm{w} \mathrm{I}=0,2 \quad \delta=\text { strong phases }
$$

$\Delta I=1 / 2$ rule

$$
\omega=\frac{\operatorname{Re} A_{2}}{\operatorname{Re} A_{o}} \sim 1 / 22 \quad \text { (experimental number) }
$$

Amplitudes are related to the parameters of CP violation $\varepsilon, \varepsilon^{\prime}$ via

$$
\begin{aligned}
\varepsilon^{\prime} & =\frac{i \omega \exp \left(i \delta_{2}-\delta_{0}\right)}{\sqrt{2}}\left[\frac{\operatorname{Im}\left(A_{2}\right)}{\operatorname{Re} A_{2}}-\frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}}\right] \\
\varepsilon & =e^{i \phi_{\varepsilon}}\left[\frac{\operatorname{Im}\left\langle\bar{K}^{0}\right| H_{\text {eff }}^{\Delta S=2}\left|K^{0}\right\rangle}{\Delta m_{K}}+\frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}}\right]
\end{aligned}
$$

\Rightarrow Related to $K^{0}-\bar{K}^{0}$ mixing

The $\Delta I=1 / 2$ rule

- In $K \rightarrow \pi \pi$ decays, the final state can have isospin 0 or 2
- Experimentally we observe that

$$
\mathbb{P}\left[K \rightarrow(\pi \pi)_{\mathrm{I}=0}\right] \sim 450 \times \mathbb{P}\left[K \rightarrow(\pi \pi)_{\mathrm{I}=2}\right]
$$

- Similar enhancement observed in different systems

The $\Delta I=1 / 2$ rule

- In $K \rightarrow \pi \pi$ decays, the final state can have isospin 0 or 2
- Experimentally we observe that

$$
\mathbb{P}\left[K \rightarrow(\pi \pi)_{\mathrm{I}=0}\right] \sim 450 \times \mathbb{P}\left[K \rightarrow(\pi \pi)_{\mathrm{I}=2}\right]
$$

- Similar enhancement observed in different systems
- In terms of amplitudes, this gives

$$
\omega=\frac{A_{2}}{A_{0}} \sim \frac{\operatorname{Re} A_{2}}{\operatorname{Re} A_{o}} \sim 1 / 22
$$

The $\Delta I=1 / 2$ rule

- In $K \rightarrow \pi \pi$ decays, the final state can have isospin 0 or 2
- Experimentally we observe that

$$
\mathbb{P}\left[K \rightarrow(\pi \pi)_{\mathrm{I}=0}\right] \sim 450 \times \mathbb{P}\left[K \rightarrow(\pi \pi)_{\mathrm{I}=2}\right]
$$

- Similar enhancement observed in different systems
- In terms of amplitudes, this gives

$$
\omega=\frac{A_{2}}{A_{0}} \sim \frac{\operatorname{Re} A_{2}}{\operatorname{Re} A_{o}} \sim 1 / 22
$$

- Perturbative running from the EW scale down to a few GeV gives a factor $1 / 2$
- Very long-standing puzzle, see e.g. Gaillard \& Lee '74, Altarelli \& Maiani '74

The $\Delta I=1 / 2$ rule

- In $K \rightarrow \pi \pi$ decays, the final state can have isospin 0 or 2
- Experimentally we observe that

$$
\mathbb{P}\left[K \rightarrow(\pi \pi)_{\mathrm{I}=0}\right] \sim 450 \times \mathbb{P}\left[K \rightarrow(\pi \pi)_{\mathrm{I}=2}\right]
$$

- Similar enhancement observed in different systems
- In terms of amplitudes, this gives

$$
\omega=\frac{A_{2}}{A_{0}} \sim \frac{\operatorname{Re} A_{2}}{\operatorname{Re} A_{o}} \sim 1 / 22
$$

- Perturbative running from the EW scale down to a few GeV gives a factor $1 / 2$
- Very long-standing puzzle, see e.g. Gaillard \& Lee '74, Altarelli \& Maiani '74
- Is the remaining contribution coming from non-perturbative QCD ? \longrightarrow task for lattice QCD

The $\Delta I=1 / 2$ rule

- In $K \rightarrow \pi \pi$ decays, the final state can have isospin 0 or 2
- Experimentally we observe that

$$
\mathbb{P}\left[K \rightarrow(\pi \pi)_{\mathrm{I}=0}\right] \sim 450 \times \mathbb{P}\left[K \rightarrow(\pi \pi)_{\mathrm{I}=2}\right]
$$

- Similar enhancement observed in different systems
- In terms of amplitudes, this gives

$$
\omega=\frac{A_{2}}{A_{0}} \sim \frac{\operatorname{Re} A_{2}}{\operatorname{Re} A_{o}} \sim 1 / 22
$$

- Perturbative running from the EW scale down to a few GeV gives a factor $1 / 2$
- Very long-standing puzzle, see e.g. Gaillard \& Lee '74, Altarelli \& Maiani '74
- Is the remaining contribution coming from non-perturbative QCD ? \longrightarrow task for lattice QCD
\Rightarrow Can we extract an explanation for this phenomena ?

Computation of $K \rightarrow \pi \pi$ amplitudes

Overview of the computation

- Operator Product expansion

- Describe $K \rightarrow(\pi \pi)_{\mathrm{I}=0,2}$ with an effective Hamiltonian [Buchalla, Buras, Lautenbacher '96]

$$
H^{\Delta s=1}=\frac{G_{F}}{\sqrt{2}}\left\{\sum_{i=1}^{10}\left(V_{u d} V_{u s}^{*} z_{i}(\mu)-V_{t d} V_{t s}^{*} y_{i}(\mu)\right) Q_{i}(\mu)\right\}
$$

Overview of the computation

- Operator Product expansion

- Describe $K \rightarrow(\pi \pi)_{\mathrm{I}=0,2}$ with an effective Hamiltonian [Buchalla, Buras, Lautenbacher '96]

$$
H^{\Delta s=1}=\frac{G_{F}}{\sqrt{2}}\left\{\sum_{i=1}^{10}\left(V_{u d} V_{u s}^{*} z_{i}(\mu)-V_{t d} V_{t s}^{*} y_{i}(\mu)\right) Q_{i}(\mu)\right\}
$$

- Amplitude given by $A \propto\langle\pi \pi| H^{\Delta s=1}|K\rangle$
- Short distance effects factorized in the Wilson coefficients y_{i}, z_{i}, computed at NLO in [BBL '96]
- Long distance effects factorized in the matrix elements

$$
\langle\pi \pi| Q_{i}(\mu)|K\rangle \longrightarrow \text { task for the Lattice }
$$

See reviews by [Christ @ Kaon'09, Lellouch @ Les Houches'09, Sachrajda @ Lattice '10],

4-quark operators

Current diagrams

$$
Q_{1}=(\bar{s} d)_{\mathrm{V}-\mathrm{A}}(\bar{u} u)_{\mathrm{V}-\mathrm{A}} \quad Q_{2}=\text { color mixed }
$$

4-quark operators

Electroweak penguins

$$
\begin{array}{ll}
Q_{7}=\frac{3}{2}(\bar{s} d)_{\mathrm{V}-\mathrm{A}} \sum_{q=u, d, s} e_{q}(\bar{q} q)_{\mathrm{V}+\mathrm{A}} & Q_{8}=\text { color mixed } \\
Q_{9}=\frac{3}{2}(\bar{s} d)_{\mathrm{V}-\mathrm{A}} \sum_{q=u, d, s} e_{q}(\bar{q} q)_{\mathrm{V}-\mathrm{A}} & Q_{10}=\text { color mixed }
\end{array}
$$

4-quark operators

$$
\begin{array}{rll}
Q_{3} & =(\bar{s} d)_{\mathrm{V}-\mathrm{A}} \sum_{q=u, d, s}(\bar{q} q)_{\mathrm{V}-\mathrm{A}} & Q_{4}=\text { color mixed } \\
Q_{5} & =(\bar{s} d)_{\mathrm{V}-\mathrm{A}} \sum_{q=u, d, s}(\bar{q} q)_{\mathrm{V}+\mathrm{A}} & Q_{6}=\text { color mixed }
\end{array}
$$

$S U(3)_{L} \otimes S U(3)_{R}$ and isospin decomposition

Irrep of $S U(3)_{L} \otimes S U(3)_{R}$

$$
\begin{aligned}
& \overline{3} \otimes 3=8+1 \\
& \overline{8} \otimes 8=27+\overline{10}+10+8+8+1
\end{aligned}
$$

Relevant operators transform under $(27,1),(8,8)$ and $(8,1)$ of $S U(3)_{L} \otimes S U(3)_{R}$

$S U(3)_{L} \otimes S U(3)_{R}$ and isospin decomposition

Irrep of $S U(3)_{L} \otimes S U(3)_{R}$

$$
\begin{aligned}
& \overline{3} \otimes 3=8+1 \\
& \overline{8} \otimes 8=27+\overline{10}+10+8+8+1
\end{aligned}
$$

Relevant operators transform under $(27,1),(8,8)$ and $(8,1)$ of $S U(3)_{L} \otimes S U(3)_{R}$

Decomposition of the 4-quark operators gives

$$
\begin{array}{ccc}
Q_{1,2}= & Q_{1,2}^{(27,1), \Delta I=3 / 2}+Q_{1,2}^{(27,1), \Delta I=1 / 2}+Q_{1,2}^{(8,8), \Delta I=1 / 2} \\
Q_{3,4}= & Q_{3,4}^{(8,1), \Delta I=1 / 2} \\
Q_{5,6}= & Q_{5,6}^{(8,1), \Delta I=1 / 2} \\
Q_{7,8}= & & Q_{7,8}^{(8,8), \Delta I=3 / 2}+Q_{7,8}^{(8,8), \Delta I=1 / 2} \\
Q_{9,10} & = & Q_{9,10}^{(27,1), \Delta I=3 / 2}+Q_{9,10}^{(27,1), \Delta I=1 / 2}+Q_{9,10}^{(8,8), \Delta I=1 / 2}
\end{array}
$$

see eg [Claude Bernard @ TASI'89] and [RBC'01]

$S U(3)_{L} \otimes S U(3)_{R}$ and isospin decomposition

Only 7 are independent: one $(27,1)$ four $(8,1)$, and two $(8,8), \Rightarrow$ we call them Q^{\prime}

$$
\begin{array}{rlrl}
(27,1) & Q_{1}^{\prime} & = & Q_{1}^{\prime(27,1), \Delta I=3 / 2}+Q_{1}^{\prime(27,1), \Delta I=1 / 2} \\
(8,1) & Q_{2}^{\prime} & = & Q_{2}^{\prime(8,1), \Delta I=1 / 2} \\
Q_{3}^{\prime} & = & Q_{3}^{\prime(8,1), \Delta I=1 / 2} \\
Q_{5}^{\prime} & = & Q_{5}^{\prime(8,1), \Delta I=1 / 2} \\
Q_{6}^{\prime} & = & Q_{6}^{\prime(8,1), \Delta I=1 / 2} \\
& & \\
(8,8) & Q_{7}^{\prime} & = & Q_{7}^{\prime(8,8), \Delta I=3 / 2}+Q_{7}^{\prime(8,8), \Delta I=1 / 2} \\
& Q_{8}^{\prime} & = & Q_{8}^{\prime(8,8), \Delta I=3 / 2}+Q_{8}^{\prime(8,8), \Delta I=1 / 2}
\end{array}
$$

$S U(3)_{L} \otimes S U(3)_{R}$ and isospin decomposition

Only 7 are independent: one $(27,1)$ four $(8,1)$, and two $(8,8), \Rightarrow$ we call them Q^{\prime}

$$
\begin{array}{rlrl}
(27,1) & Q_{1}^{\prime} & = & Q_{1}^{\prime(27,1), \Delta I=3 / 2}+Q_{1}^{\prime(27,1), \Delta I=1 / 2} \\
(8,1) \quad Q_{2}^{\prime} & = & Q_{2}^{\prime(8,1), \Delta I=1 / 2} \\
Q_{3}^{\prime} & = & Q_{3}^{\prime(8,1), \Delta I=1 / 2} \\
Q_{5}^{\prime} & = & Q_{5}^{\prime(8,1), \Delta I=1 / 2} \\
Q_{6}^{\prime} & = & Q_{6}^{\prime(8,1), \Delta I=1 / 2} \\
& & \\
(8,8) \quad Q_{7}^{\prime} & = & Q_{7}^{\prime(8,8), \Delta I=3 / 2}+Q_{7}^{\prime(8,8), \Delta I=1 / 2} \\
& Q_{8}^{\prime} & = & Q_{8}^{\prime(8,8), \Delta I=3 / 2}+Q_{8}^{\prime(8,8), \Delta I=1 / 2}
\end{array}
$$

Only 3 operators contribute to the $\Delta I=3 / 2$ chanel

A challenge!

Many obstacles:

- Final state with two pions
- Many operators that mix under renormalisation
- Require the evaluation of disconnected graphs

Need to preserve chiral-flavour symetry at finite lattice spacing

Plus the usual difficulties: light dynamical quarks, large volume, ...

Isospin channels

- Only 3 of these operators contribute to the $\Delta I=3 / 2$ channel
- A tree-level operator
- 2 electroweak penguins
- No disconnect graphs contribute to the $\Delta I=3 / 2$ channel

u \qquad u
$\Rightarrow A_{2}$ is much simpler than A_{0}
Still highly non-trivial, but perfect challenge for lattice QCD with chiral fermions

Lattice computation of A_{2}

A_{2} from RBC-UKQCD, Overview of the computation

- First problem: the two-pion state
\Rightarrow Lellouch-Lüscher method [Lellouch, Lüscher '00] to obtain the physical matrix element from the finite-volume Euclidiean amplitude and the derivative of the phase shift

A_{2} from RBC-UKQCD, Overview of the computation

- First problem: the two-pion state
\Rightarrow Lellouch-Lüscher method [Lellouch, Lüscher '00] to obtain the physical matrix element from the finite-volume Euclidiean amplitude and the derivative of the phase shift
- Unfortunately this implies that the desired physical state is an excited one (difficult to extract)
\Rightarrow For A_{2}, combine
- Wigner-Eckart theorem (Exact up to isospin symmetry breaking)

$$
\left\langle\pi^{+}\left(p_{1}\right) \pi^{0}\left(p_{2}\right)\right| O_{\Delta I_{Z}=1 / 2}^{\Delta I=3 / 2}\left|K^{+}\right\rangle=3 / 2\left\langle\pi^{+}\left(p_{1}\right) \pi^{+}\left(p_{2}\right)\right| O_{\Delta I_{Z}=3 / 2}^{\Delta I=3 / 2}\left|K^{+}\right\rangle
$$

and then compute the unphysical process $K^{+} \rightarrow \pi^{+} \pi^{+}$

- Use Anti-periodic B.C. to eliminate the unwanted (wrong-kinematic) state
[Kim '04, Sachrajda \& Villadoro '05]

A_{2} from RBC-UKQCD, Overview of the computation

- Once the bare matrix elements have been computed, they have to be renormalised and matched to the continuum (e.g. $\overline{\mathrm{MS}}$)

A_{2} from RBC-UKQCD, Overview of the computation

- Once the bare matrix elements have been computed, they have to be renormalised and matched to the continuum (e.g. $\overline{\mathrm{MS}}$)
- A popular way is the Rome-Southampton technique [Martinelli, Pittori, Sachrajda, Testa, Vladikas '94]

The method requires the existence of a "windows" (a is the lattice spacing)

$$
\Lambda_{Q C D} \ll \mu \ll \pi / a
$$

A_{2} from RBC-UKQCD, Overview of the computation

- Once the bare matrix elements have been computed, they have to be renormalised and matched to the continuum (e.g. $\overline{\mathrm{MS}}$)
- A popular way is the Rome-Southampton technique [Martinelli, Pittori, Sachrajda, Testa, Vladikas '94]

The method requires the existence of a "windows" (a is the lattice spacing)

$$
\Lambda_{Q C D} \ll \mu \ll \pi / a
$$

- On the other hand, dealing with a 2-pion state requires a large physical volume
\Rightarrow Our first computation of A_{2} was performed on coarse lattice ($a \sim 0.14 \mathrm{fm}, L \sim 4.5 \mathrm{fm}$)
\Rightarrow The Rome-Southampton condition was not satisfied

A_{2} from RBC-UKQCD, Overview of the computation

- Once the bare matrix elements have been computed, they have to be renormalised and matched to the continuum (e.g. $\overline{\mathrm{MS}}$)
- A popular way is the Rome-Southampton technique [Martinelli, Pittori, Sachrajda, Testa, Vladikas '94]

The method requires the existence of a "windows" (a is the lattice spacing)

$$
\Lambda_{Q C D} \ll \mu \ll \pi / a
$$

- On the other hand, dealing with a 2-pion state requires a large physical volume
\Rightarrow Our first computation of A_{2} was performed on coarse lattice ($a \sim 0.14 \mathrm{fm}, L \sim 4.5 \mathrm{fm}$)
\Rightarrow The Rome-Southampton condition was not satisfied
- Solution

Renormalise at low energy $\mu_{0} \sim 1.1 \mathrm{GeV}$ on and run non-perturbatively using finer lattices to $\mu=3 \mathrm{GeV}$ and match to $\overline{\mathrm{MS}}$ [Arthur, Boyle '10, Arthur, Boyle, N.G. , Kelly, Lytle '11]

$$
\lim _{a_{1} \rightarrow 0} \underbrace{\left[Z\left(\mu_{1}, a_{1}\right) Z^{-1}\left(\mu_{0}, a_{1}\right)\right]}_{\text {fine lattice }} \times \underbrace{Z\left(\mu_{0}, a_{0}\right)}_{\text {coarse lattice }}=Z\left(\mu_{1}, a_{0}\right)
$$

A_{2} from RBC-UKQCD (2012)

- Very challenging both theoretically and numerically
- Computation performed with state-of-the-art algorithm and large-scale computer resources
- Possible because of the development of various methods

A_{2} from RBC-UKQCD (2012)

- Very challenging both theoretically and numerically
- Computation performed with state-of-the-art algorithm and large-scale computer resources
- Possible because of the development of various methods

Blum, Boyle, Christ, N.G.,Goode, Izubuchi, Jung, Kelly, Lehner, Lightman, Liu, Lytle, Mawhinney, Sachrajda, Soni, Sturm, PRL'12, PRD'12

■ $2+1$ chiral fermions (Domain-Wall on IDSDR a $\sim 0.14 \mathrm{fm}$)

- lightest unitary pion mass $\sim 170 \mathrm{MeV}$ (partially quenched 140 MeV)
- Physical kinematics

■ Non-perturbative-renormalization through RI-SMOM schemes

A_{2} from RBC-UKQCD (2012)

- Very challenging both theoretically and numerically
- Computation performed with state-of-the-art algorithm and large-scale computer resources
- Possible because of the development of various methods

Blum, Boyle, Christ, N.G.,Goode, Izubuchi, Jung, Kelly, Lehner, Lightman, Liu, Lytle, Mawhinney, Sachrajda, Soni, Sturm, PRL'12, PRD'12

■ $2+1$ chiral fermions (Domain-Wall on IDSDR a $\sim 0.14 \mathrm{fm}$)

- lightest unitary pion mass $\sim 170 \mathrm{MeV}$ (partially quenched 140 MeV)
- Physical kinematics
- Non-perturbative-renormalization through RI-SMOM schemes
- Find $\operatorname{Re} A_{2}=1.381(46)_{\text {stat }}(258)_{\text {syst }} 10^{-8} \mathrm{GeV}$, experimental value is $1.479(4) 10^{-8} \mathrm{GeV}$
- And $\operatorname{Im} A_{2}=-6.54(46)_{\text {stat }}(120)_{\text {syst }} G \mathrm{GeV}$

A_{2} from RBC-UKQCD (2012)

- Very challenging both theoretically and numerically
- Computation performed with state-of-the-art algorithm and large-scale computer resources
- Possible because of the development of various methods

Blum, Boyle, Christ, N.G.,Goode, Izubuchi, Jung, Kelly, Lehner, Lightman, Liu, Lytle, Mawhinney, Sachrajda, Soni, Sturm, PRL'12, PRD'12

- $2+1$ chiral fermions (Domain-Wall on IDSDR a $\sim 0.14 \mathrm{fm}$)
- lightest unitary pion mass $\sim 170 \mathrm{MeV}$ (partially quenched 140 MeV)
- Physical kinematics
- Non-perturbative-renormalization through RI-SMOM schemes
- Find $\operatorname{Re} A_{2}=1.381(46)_{\text {stat }}(258)_{\text {syst }} 10^{-8} \mathrm{GeV}$, experimental value is $1.479(4) 10^{-8} \mathrm{GeV}$
- And $\operatorname{Im} A_{2}=-6.54(46)_{\text {stat }}(120)_{\text {syst }} \mathrm{GeV}$
- Important computation in the field: first realistic computation of a hadronic decay
- Main limitation: single (and rather coarse) lattice spacing

2014-2015 update

$K \rightarrow(\pi \pi)_{I=2} 2015$ update

- Main limitation on the previous computation : only one coarse lattice spacing IDSDR $32^{3} \times 64$, with $a^{-1} \sim 1.37 \mathrm{GeV} \Rightarrow a \sim 0.14 \mathrm{fm}, L \sim 4.6 \mathrm{fm}$

$K \rightarrow(\pi \pi)_{I=2} 2015$ update

- Main limitation on the previous computation : only one coarse lattice spacing IDSDR $32^{3} \times 64$, with $a^{-1} \sim 1.37 \mathrm{GeV} \Rightarrow a \sim 0.14 \mathrm{fm}, L \sim 4.6 \mathrm{fm}$
- New computation:
two lattice spacing, $n_{f}=2+1$, large volume at the physical point
New discretisation of the Domain-Wall fermion forumlation: Möbius Brower, Neff, Orginos '12

■ $48^{3} \times 96$, with $a^{-1} \sim 1.729 \mathrm{GeV} \Rightarrow a \sim 0.11 \mathrm{fm}, L \sim 5.5 \mathrm{fm}$
■ $64^{3} \times 128$ with $a^{-1} \sim 2.358 \mathrm{GeV} \Rightarrow a \sim 0.084 \mathrm{fm}, L \sim 5.4 \mathrm{fm}$
■ amres $\sim 10^{-4}$

$K \rightarrow(\pi \pi)_{I=2} 2015$ update

2012 Blum, Boyle, Christ, N.G.,Goode, Izubuchi, Jung, Kelly, Lehner, Lightman, Liu, Lytle, Mawhinney, Sachrajda, Soni, Sturm, PRL'12, PRD'12

$$
\operatorname{Re} A_{2}=1.381(46)_{\text {stat }}(258)_{\text {syst }} 10^{-8} \mathrm{GeV} \quad \operatorname{Im} A_{2}=-6.54(46)_{\text {stat }}(120)_{\text {syst }} 10^{-13} \mathrm{GeV}
$$

2015 Blum, Boyle, Christ, Frison, N.G., Janowski, Jung, Kelly, Lehner, Lytle, Mawhinney, Sachrajda, Soni, Hin, Zhang, PRD'15

$$
\operatorname{Re} A_{2}=1.50(4)_{\text {stat }}(14)_{\text {syst }} 10^{-8} \mathrm{GeV} \quad \operatorname{Im} A_{2}=-6.99(20)_{\text {stat }}(84)_{\text {syst }} 10^{-13} \mathrm{GeV}
$$

see also talk by T.Janowski @ lat'13
$K \rightarrow(\pi \pi)_{0}$ and the $\Delta I=1 / 2$ rule

A_{0} from RBC-UKQCD (2011)

"Pilot" computation of the full process
T. Blum, Boyle, Christ, N.G., Goode, Izubuchi, Lehner, Liu, Mawhinney, Sachrajda, Soni, Sturm, Yin, Zhou, PRD'11.

Unphysical:

■ "Heavy" pions (lightest $\sim m_{\pi} \sim 300 \mathrm{MeV}$), small volume
■ Non-physical kinematics: pions at rest

A_{0} from RBC-UKQCD (2011)

"Pilot" computation of the full process
T. Blum, Boyle, Christ, N.G., Goode, Izubuchi, Lehner, Liu, Mawhinney, Sachrajda, Soni, Sturm, Yin, Zhou, PRD'11.

Unphysical:

■ "Heavy" pions (lightest $\sim m_{\pi} \sim 300 \mathrm{MeV}$), small volume
■ Non-physical kinematics: pions at rest

But "complete":

- Two-pion state
- All the contractions of the 7 fourk-operators are computed
- Renormalisation done non-perturbatively

A_{0} from RBC-UKQCD (2011)

"Pilot" computation of the full process
T. Blum, Boyle, Christ, N.G., Goode, Izubuchi, Lehner, Liu, Mawhinney, Sachrajda, Soni, Sturm, Yin, Zhou, PRD'11.

Unphysical:

■ "Heavy" pions (lightest $\sim m_{\pi} \sim 300 \mathrm{MeV}$), small volume
■ Non-physical kinematics: pions at rest

But "complete":

- Two-pion state
- All the contractions of the 7 fourk-operators are computed
- Renormalisation done non-perturbatively
obtain

$$
\begin{aligned}
& \operatorname{Re} A_{0}=3.80(82) \times 10^{-7} \mathrm{GeV} \\
& \operatorname{Im} A_{0}=-2.5(2.2) \times 10^{-11} \mathrm{GeV}
\end{aligned}
$$

Toward an quantitative understanding of the $\Delta I=1 / 2$ rule

	$1 / a$ $[\mathrm{GeV}]$	m_{π} $[\mathrm{MeV}]$	m_{K} $[\mathrm{MeV}]$	$\operatorname{Re} A_{2}$ $\left[10^{-8} \mathrm{GeV}\right]$	$\operatorname{Re} A_{0}$ $\left[10^{-8} \mathrm{GeV}\right]$	$\frac{\operatorname{Re} A_{0}}{\operatorname{Re} A_{2}}$	kinematics
16^{3} IW	$1.73(3)$	$422(7)$	$878(15)$	$4.911(31)$	$45(10)$	$9.1(2.1)$	threshold
24^{3} IW	$1.73(3)$	$329(6)$	$662(11)$	$2.668(14)$	$32.1(4.6)$	$12.0(1.7)$	threshold
32^{3} ID	$1.36(1)$	$142.9(1.1)$	$511.3(3.9)$	$1.38(5)(26)$	-	-	physical
Exp	-	$135-140$	$494-498$	$1.479(4)$	$33.2(2)$	$22.45(6)$	

Pattern which could explain the $\Delta I=1 / 2$ enhancement

Boyle, Christ, N.G., Goode, Izubuchi, Janowski, Lehner, Liu, Lytle, Sachrajda, Soni, Zhang, PRL'13

Toward an quantitative understanding of the $\Delta I=1 / 2$ rule

Two kinds of contraction for each $\Delta I=3 / 2$ operator

Toward an quantitative understanding of the $\Delta I=1 / 2$ rule

Two kinds of contraction for each $\Delta I=3 / 2$ operator

- $\operatorname{Re} A_{2}$ is dominated by the tree level operator (EWP ~1\%)

$$
\operatorname{Re} A_{2} \sim(1)+(2)
$$

Toward an quantitative understanding of the $\Delta I=1 / 2$ rule

Two kinds of contraction for each $\Delta I=3 / 2$ operator

- $\operatorname{Re} A_{2}$ is dominated by the tree level operator (EWP ~1\%)

$$
\operatorname{Re} A_{2} \sim(1)+\text { (2) }
$$

- Naive factorisation approach: (2) $\sim 1 / 3(1)$

Toward an quantitative understanding of the $\Delta I=1 / 2$ rule

Two kinds of contraction for each $\Delta I=3 / 2$ operator

Contraction (1)

Contraction (2)

- $\operatorname{Re} A_{2}$ is dominated by the tree level operator (EWP ~1\%)

$$
\operatorname{Re} A_{2} \sim(1)+(2)
$$

- Naive factorisation approach: (2) $\sim 1 / 3$ (1)
- Our computation: (2) ~-0.7 (1)
\Rightarrow large cancellation in $\operatorname{Re} A_{2}$

Toward an quantitative understanding of the $\Delta I=1 / 2$ rule

$\operatorname{Re} A_{0}$ is also dominated by the tree level operators

Toward an quantitative understanding of the $\Delta I=1 / 2$ rule

$\operatorname{Re} A_{0}$ is also dominated by the tree level operators

Dominant contribution to $Q_{2}^{\text {lat }}$ is $\propto(2(2)-(1)) \Rightarrow$ Enhancement in $\operatorname{Re} A_{0}$

Toward an quantitative understanding of the $\Delta I=1 / 2$ rule

$\operatorname{Re} A_{0}$ is also dominated by the tree level operators

Dominant contribution to $Q_{2}^{\text {lat }}$ is \propto (2(2) - (1)) \Rightarrow Enhancement in $\operatorname{Re} A_{0}$

$$
\frac{\operatorname{Re} A_{0}}{\operatorname{Re} A_{2}} \sim \frac{2(2)-(1)}{(1)+(2)}
$$

Toward an quantitative understanding of the $\Delta I=1 / 2$ rule

$\operatorname{Re} A_{0}$ is also dominated by the tree level operators

Dominant contribution to $Q_{2}^{\text {lat }}$ is $\propto(2(2)-(1)) \Rightarrow$ Enhancement in $\operatorname{Re} A_{0}$

$$
\frac{\operatorname{Re} A_{0}}{\operatorname{Re} A_{2}} \sim \frac{2(2)-(1)}{(1)+(2)}
$$

With this unphysical computation (kinematics, masses) we find

$$
\begin{aligned}
\frac{\operatorname{Re} A_{0}}{\operatorname{Re} A_{2}} & =9.1(2.1) \text { for } m_{K}=878 \mathrm{MeV} m_{\pi}=422 \mathrm{MeV} \\
& =12.0(1.7) \text { for } m_{K}=662 \mathrm{MeV} m_{\pi}=329 \mathrm{MeV}
\end{aligned}
$$

Emerging understanding of the $\Delta I=1 / 2$ rule

- Relative sign between (1) and (2) implies both a cancellation in $\operatorname{Re} A_{2}$ and an enhancement in $\operatorname{Re} A_{0}$
- Analytic work in that direction, e.g. Pich, de Rafael '96, Bardeen, Buras, Gerard ' 87
- See also discussion in Lellouch @ Les Houches '09

Emerging understanding of the $\Delta I=1 / 2$ rule

- Relative sign between (1) and (2) implies both a cancellation in $\operatorname{Re} A_{2}$ and an enhancement in $\operatorname{Re} A_{0}$
- Analytic work in that direction, e.g. Pich, de Rafael ' 96 , Bardeen, Buras, Gerard ' 87
- See also discussion in Lellouch @ Les Houches '09
- Similar observation done by another very recent lattice computation Ishizuka, Ishikawa, Ukawa, Yoshié '15 $K \rightarrow \pi \pi$ amplitudes with unphysical kinematics (and Wilson fermions)

$A_{0}, 2015$ update

- First complete computation of $K \rightarrow \pi \pi$ (both isospin channel) with physical kinematics Bai, Blum, Boyle, Christ, Frison, N.G., Izubuchi, Jung, Kelly, Lehner, Mawhinney, Sachrajda, Soni, Zhang
- Pion mass $m_{\pi}=143.1(2.0) \mathrm{MeV}$, single lattice spacing $a \sim 0.14 \mathrm{fm}$
- Physical kinematics achieved with G-Parity boundary conditions

Kim, Christ, '03 and '09

- Requires algorithmic development, dedicated generation of gauge configurations, ...
- See talk by C.Kelly and proceeding from Lattice'14

$A_{0}, 2015$ update

After renormalisation at $\mu \sim 1.5 \mathrm{GeV}$, we combine with the Wilson coefficients and find

i	$\operatorname{Re}\left(A_{0}\right)(\mathrm{GeV})$	$\operatorname{Im}\left(A_{0}\right)(\mathrm{GeV})$
	$1.02(0.20)(0.07) \times 10^{-7}$	0
1	$3.63(0.91)(0.28) \times 10^{-7}$	0
3	$-1.19(1.58)(1.12) \times 10^{-10}$	$1.54(2.04)(1.45) \times 10^{-12}$
4	$-1.86(0.63)(0.33) \times 10^{-9}$	$1.82(0.62)(0.32) \times 10^{-11}$
5	$-8.72(2.17)(1.80) \times 10^{-10}$	$1.57(0.39)(0.32) \times 10^{-12}$
6	$3.33(0.85)(0.22) \times 10^{-9}$	$-3.57(0.91)(0.24) \times 10^{-11}$
7	$2.40(0.41)(0.00) \times 10^{-11}$	$8.55(1.45)(0.00) \times 10^{-14}$
8	$-1.33(0.04)(0.00) \times 10^{-10}$	$-1.71(0.05)(0.00) \times 10^{-12}$
9	$-7.12(1.90)(0.46) \times 10^{-12}$	$-2.43(0.65)(0.16) \times 10^{-12}$
10	$7.57(2.72)(0.71) \times 10^{-12}$	$-4.74(1.70)(0.44) \times 10^{-13}$
Tot	$4.66(0.96)(0.27) \times 10^{-7}$	$-1.90(1.19)(0.32) \times 10^{-11}$

Standard model prediction for $\varepsilon^{\prime} / \varepsilon$

$\varepsilon^{\prime} / \varepsilon$ can be computed from

$$
\operatorname{Re}\left(\varepsilon^{\prime} / \varepsilon\right)=\operatorname{Re}\left\{\frac{i \omega \exp \left(i \delta_{2}-\delta_{0}\right)}{\sqrt{2} \varepsilon}\left[\frac{\operatorname{Im}\left(A_{2}\right)}{\operatorname{Re} A_{2}}-\frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}}\right]\right\}
$$

Combining our new value of $\operatorname{Im} A_{0}$ and δ_{0} with

- our continuum value for $\operatorname{Im} A_{2}$
- the experimental value for $\operatorname{ReA}_{0}, \operatorname{ReA}_{2}$ and their ratio ω we find

$$
\operatorname{Re}\left(\varepsilon^{\prime} / \varepsilon\right)=1.38(5.15)(4.43) \times 10^{-4}
$$

whereas the experimental value is

$$
\operatorname{Re}\left(\varepsilon^{\prime} / \varepsilon\right)=16.6(2.3) \times 10^{-4}
$$

Conclusions, outlook

Finally, a complete computation for $K \rightarrow \pi \pi$, with physical quark masses and physical kinematics

- A_{2} now extrapolated to the continuum limit
- Very recent computation of A_{0} with physical setup at single lattice spacing
- Only approximate agreement for $\varepsilon^{\prime} / \varepsilon$
- Observe a mechanism which contributes to a large enhancement in A_{0} / A_{2}
- Clearly shows the need for a non-perturbative method
- Precision still far from the experimental one, but provide a value for $\operatorname{Im} A_{2}$ and $\operatorname{Im} A_{0}$

Conclusions, outlook

Finally, a complete computation for $K \rightarrow \pi \pi$, with physical quark masses and physical kinematics

- A_{2} now extrapolated to the continuum limit
- Very recent computation of A_{0} with physical setup at single lattice spacing
- Only approximate agreement for $\varepsilon^{\prime} / \varepsilon$
- Observe a mechanism which contributes to a large enhancement in A_{0} / A_{2}
- Clearly shows the need for a non-perturbative method
- Precision still far from the experimental one, but provide a value for $\operatorname{Im} A_{2}$ and $\operatorname{Im} A_{0}$

This was possible because of important hardware and algorithmic improvement, but also because of the development of new theoretical methods, techniques, tricks, ideas ...

Conclusions, outlook

Finally, a complete computation for $K \rightarrow \pi \pi$, with physical quark masses and physical kinematics

- A_{2} now extrapolated to the continuum limit
- Very recent computation of A_{0} with physical setup at single lattice spacing
- Only approximate agreement for $\varepsilon^{\prime} / \varepsilon$
- Observe a mechanism which contributes to a large enhancement in A_{0} / A_{2}
- Clearly shows the need for a non-perturbative method
- Precision still far from the experimental one, but provide a value for $\operatorname{Im} A_{2}$ and $\operatorname{Im} A_{0}$

This was possible because of important hardware and algorithmic improvement, but also because of the development of new theoretical methods, techniques, tricks, ideas ...

For A_{0}, it is only the beginning:

- statistical error should be reduced
- Renormalisation at higher energy (now $\mu \sim 1.5 \mathrm{GeV}$)
- Finer lattice and continuum limit ...

Backup

Standard model prediction for $\varepsilon^{\prime} / \varepsilon$

	$\begin{gathered} 1 / a \\ {[\mathrm{GeV}]} \end{gathered}$	$\begin{gathered} m_{\pi} \\ {[\mathrm{MeV}]} \end{gathered}$	$\begin{gathered} m_{K} \\ {[\mathrm{MeV}]} \end{gathered}$	$\begin{gathered} \operatorname{Re} A_{2} \\ {\left[10^{-8} \mathrm{GeV}\right]} \end{gathered}$	$\begin{gathered} \operatorname{Re} A_{0} \\ {\left[10^{-8} \mathrm{GeV}\right]} \end{gathered}$	$\frac{\operatorname{Re} A_{0}}{\operatorname{Re} A_{2}}$	kinematics
16^{3} IW	1.73(3)	422(7)	878(15)	4.911(31)	45(10)	9.1(2.1)	threshold
24^{3} IW	1.73(3)	329(6)	662(11)	2.668(14)	32.1(4.6)	12.0(1.7)	threshold
32^{3} ID	1.36(1)	142.9(1.1)	511.3(3.9)	1.38(5)(26)	-	-	physical
cont.	-	139	497-507	1.50(4)(14)	-	-	physical
32^{3} ID	1.36(1)	143.1(2.0)	490.6(2.4)	-	46.6(10.0)(12.1)	-	physical
Exp	-	135-140	494-498	1.479(4)	33.2(2)	22.45(6)	

RBC-UKQCD setup - History- Present

$2+1$ Domain-Wall fermions

Chiral-Flavour symmetry (almost) exact at finite lattice spacing
Finite fith dimension $L_{s} \rightarrow$ small additive quark mass renormalisation $m_{\text {res }}$

RBC-UKQCD setup - History- Present

$2+1$ Domain-Wall fermions

Chiral-Flavour symmetry (almost) exact at finite lattice spacing
Finite fith dimension $L_{s} \rightarrow$ small additive quark mass renormalisation $m_{\text {res }}$

- 2008: IW $a^{-1}=1.729(18) \mathrm{GeV} \leftrightarrow a \sim 0.1145 \mathrm{fm}$, on $24^{3} \times 64 \times 16$, ie $L \sim 2.74 \mathrm{fm}$ Unitary pion masses $m_{\pi}=331,419$, (557) MeV

RBC-UKQCD setup - History- Present

$2+1$ Domain-Wall fermions
Chiral-Flavour symmetry (almost) exact at finite lattice spacing
Finite fith dimension $L_{s} \rightarrow$ small additive quark mass renormalisation $m_{\text {res }}$

- 2008: IW $a^{-1}=1.729(18) \mathrm{GeV} \leftrightarrow a \sim 0.1145 \mathrm{fm}$, on $24^{3} \times 64 \times 16$, ie $L \sim 2.74 \mathrm{fm}$ Unitary pion masses $m_{\pi}=331,419$, (557) MeV
- 2010: $\mathrm{IW} a^{-1}=2.282(28) \mathrm{GeV} \leftrightarrow a \sim 0.0868 \mathrm{fm}$, on $32^{3} \times 64 \times 16$, ie $L \sim 2.77 \mathrm{fm}$ Unitary pion masses $m_{\pi}=290,345,394 \mathrm{MeV}$

RBC-UKQCD setup - History- Present

$2+1$ Domain-Wall fermions
Chiral-Flavour symmetry (almost) exact at finite lattice spacing
Finite fith dimension $L_{s} \rightarrow$ small additive quark mass renormalisation $m_{\text {res }}$

- 2008: IW $a^{-1}=1.729(18) \mathrm{GeV} \leftrightarrow a \sim 0.1145 \mathrm{fm}$, on $24^{3} \times 64 \times 16$, ie $L \sim 2.74 \mathrm{fm}$ Unitary pion masses $m_{\pi}=331,419$, (557) MeV
- 2010: IW $a^{-1}=2.282(28) \mathrm{GeV} \leftrightarrow a \sim 0.0868 \mathrm{fm}$, on $32^{3} \times 64 \times 16$, ie $L \sim 2.77 \mathrm{fm}$ Unitary pion masses $m_{\pi}=290,345,394 \mathrm{MeV}$
- 2012: IDSDR $a^{-1}=1.372(10) \mathrm{GeV} \leftrightarrow a \sim 0.144 \mathrm{fm}$, on $32^{3} \times 64 \times 32$, ie $L \sim 4.62 \mathrm{fm}$ Unitary pion mass $m_{\pi}=171 \mathrm{MeV}$

RBC-UKQCD setup - History- Present

$2+1$ Domain-Wall fermions
Chiral-Flavour symmetry (almost) exact at finite lattice spacing
Finite fith dimension $L_{s} \rightarrow$ small additive quark mass renormalisation $m_{r e s}$

- 2008: IW $a^{-1}=1.729(18) \mathrm{GeV} \leftrightarrow a \sim 0.1145 \mathrm{fm}$, on $24^{3} \times 64 \times 16$, ie $L \sim 2.74 \mathrm{fm}$ Unitary pion masses $m_{\pi}=331,419$, (557) MeV
- 2010: IW $a^{-1}=2.282(28) \mathrm{GeV} \leftrightarrow a \sim 0.0868 \mathrm{fm}$, on $32^{3} \times 64 \times 16$, ie $L \sim 2.77 \mathrm{fm}$ Unitary pion masses $m_{\pi}=290,345,394 \mathrm{MeV}$
- 2012: IDSDR $a^{-1}=1.372(10) \mathrm{GeV} \leftrightarrow a \sim 0.144 \mathrm{fm}$, on $32^{3} \times 64 \times 32$, ie $L \sim 4.62 \mathrm{fm}$ Unitary pion mass $m_{\pi}=171 \mathrm{MeV}$
- 2014: Möbius, Unitary pion mass 139 MeV
- $a^{-1}=1.730(4) \mathrm{GeV} \leftrightarrow a \sim 0.1145 \mathrm{fm}$, on $48^{3} \times 96 \times 24$ ie $L \sim 4.62 \mathrm{fm}$
- $a^{-1}=2.359(7) \mathrm{GeV} \leftrightarrow a \sim 0.0839 \mathrm{fm}$, on $64^{3} \times 128 \times 12$ ie $L \sim 5.475 \mathrm{fm}$

