$K ightarrow \pi\pi$ Decays and the $\Delta I = 1/2$ rule

Nicolas Garron

Plymouth University

Chiral Dynamics 2015

Pisa

June 29, 2015

Nicolas Garron (Plymouth University)

 $K
ightarrow \pi \pi$ Decays and the $\Delta I = 1/2$ rule

- This topic has long history, a lot of work has been done (effective theories, lattice and more)
- I only present here the work done by RBC and UKQCD collaborations
- Apologies if I don't mention your work or your favorite computation

- \blacksquare Introduction: $K \rightarrow \pi\pi$ and CP violation
- Overview of the computation
- $K \to (\pi \pi)_{I=2}$ channel
- $K \to (\pi \pi)_{I=0}$ channel
- Emerging understanding of the $\Delta I = 1/2$ rule

$K \rightarrow \pi\pi$ and CP violation

Background: Kaon decays and CP violation

- First discovery of CP violation was made in kaon system in 1964 (Christenson, Cronin, Fitch and Turlay)
- Noble prize in 1980 (Cronin and Fitch)
- Direct CP violation discovered in kaon decays [NA31, KTeV, NA48, '90-99]
- Very nice measurements of both direct and indirect CP violation (numbers from [PDG 2011])

 $\left\{ \begin{array}{ll} \textit{Indirect} & |\varepsilon| &= (2.228 \pm 0.011) \times 10^{-3} \\ \\ \textit{Direct} & \textit{Re}\left(\frac{\varepsilon'}{\varepsilon}\right) &= (1.65 \pm 0.26) \times 10^{-3} \end{array} \right.$

Theoretically:

Relate indirect CP violation parameter (ε) to neutral kaon mixing (B_K) Still lacking a quantitative description of direct CP violation (ε')

Sensitivity to new physics expected

Background: Kaon decays and CP violation

 $\text{Flavour eigenstates } \left(\begin{array}{c} \kappa^0 = \overline{s} \gamma_5 d \\ \overline{\kappa}^0 = \overline{d} \gamma_5 s \end{array}\right) \neq \text{CP eigenstates } |\kappa^0_{\pm}\rangle = \frac{1}{\sqrt{2}} \{|\kappa^0\rangle \mp |\overline{\kappa}^0\rangle\}$

They are mixed in the physical eigenstates $\begin{cases} |K_L\rangle & \sim & |K_-^0\rangle + \overline{\varepsilon}|K_+^0\rangle \\ |K_c\rangle & \sim & |K_-^0\rangle + \overline{\varepsilon}|K_-^0\rangle \end{cases}$

Direct and indirect CP violation in $K \to \pi \pi$

$$arepsilon = rac{A(K_L o (\pi\pi)_{I=0})}{A(K_S o (\pi\pi)_{I=0})} = |arepsilon|e^{i\phiarepsilon} \sim ar{arepsilon}$$

$K \rightarrow \pi \pi$ amplitudes

Two isospin channels: $\Delta I = 1/2$ and $\Delta I = 3/2$

 $K \rightarrow (\pi \pi)_{I=0,2}$

Corresponding amplitudes defined as

 $A[K \rightarrow (\pi \pi)_{\rm I}] = A_{\rm I} \exp(i\delta_{\rm I})$ /w I = 0, 2 δ = strong phases

 $\Delta I = 1/2$ rule

$$\omega = rac{\operatorname{Re}A_2}{\operatorname{Re}A_o} \sim 1/22$$
 (experimental number)

Amplitudes are related to the parameters of CP violation $\varepsilon, \varepsilon'$ via

$$arepsilon' = rac{i\omega \exp(i\delta_2 - \delta_0)}{\sqrt{2}} \left[rac{\mathrm{Im}(A_2)}{\mathrm{Re}A_2} - rac{\mathrm{Im}A_0}{\mathrm{Re}A_0}
ight]$$

$$\varepsilon = e^{i\phi_{\varepsilon}} \left[\frac{\mathrm{Im}\langle \bar{K}^{0} | \mathcal{H}_{\mathrm{eff}}^{\Delta S=2} | \mathcal{K}^{0} \rangle}{\Delta m_{\mathcal{K}}} + \frac{\mathrm{Im}A_{0}}{\mathrm{Re}A_{0}} \right]$$

 \Rightarrow Related to $K^0 - \bar{K}^0$ mixing

Nicolas Garron (Plymouth University)

- In $K \to \pi\pi$ decays, the final state can have isospin 0 or 2
- Experimentally we observe that

 $\mathbb{P}[K \to (\pi\pi)_{I=0}] \sim 450 \times \mathbb{P}[K \to (\pi\pi)_{I=2}]$

Similar enhancement observed in different systems

- In $K \to \pi\pi$ decays, the final state can have isospin 0 or 2
- Experimentally we observe that

$$\mathbb{P}[K \to (\pi\pi)_{\mathrm{I}=0}] \sim 450 \times \mathbb{P}[K \to (\pi\pi)_{\mathrm{I}=2}]$$

- Similar enhancement observed in different systems
- In terms of amplitudes, this gives

$$\omega = rac{A_2}{A_0} \sim rac{\mathrm{Re}A_2}{\mathrm{Re}A_o} \sim 1/22$$

- In $K \to \pi\pi$ decays, the final state can have isospin 0 or 2
- Experimentally we observe that

$$\mathbb{P}[K \to (\pi\pi)_{I=0}] \sim 450 \times \mathbb{P}[K \to (\pi\pi)_{I=2}]$$

- Similar enhancement observed in different systems
- In terms of amplitudes, this gives

$$\omega = rac{A_2}{A_0} \sim rac{\mathrm{Re}A_2}{\mathrm{Re}A_o} \sim 1/22$$

- Perturbative running from the EW scale down to a few GeV gives a factor 1/2
- Very long-standing puzzle, see e.g. Gaillard & Lee '74, Altarelli & Maiani '74

- In $K \to \pi\pi$ decays, the final state can have isospin 0 or 2
- Experimentally we observe that

$$\mathbb{P}[K \to (\pi\pi)_{\mathrm{I}=0}] \sim 450 \times \mathbb{P}[K \to (\pi\pi)_{\mathrm{I}=2}]$$

- Similar enhancement observed in different systems
- In terms of amplitudes, this gives

$$\omega = rac{A_2}{A_0} \sim rac{\mathrm{Re}A_2}{\mathrm{Re}A_o} \sim 1/22$$

- Perturbative running from the EW scale down to a few GeV gives a factor 1/2
- Very long-standing puzzle, see e.g. Gaillard & Lee '74, Altarelli & Maiani '74
- Is the remaining contribution coming from non-perturbative QCD ? \longrightarrow task for lattice QCD

- In $K \to \pi\pi$ decays, the final state can have isospin 0 or 2
- Experimentally we observe that

$$\mathbb{P}[K \to (\pi\pi)_{\mathrm{I}=0}] \sim 450 \times \mathbb{P}[K \to (\pi\pi)_{\mathrm{I}=2}]$$

- Similar enhancement observed in different systems
- In terms of amplitudes, this gives

$$\omega = rac{A_2}{A_0} \sim rac{\mathrm{Re}A_2}{\mathrm{Re}A_o} \sim 1/22$$

- Perturbative running from the EW scale down to a few GeV gives a factor 1/2
- Very long-standing puzzle, see e.g. Gaillard & Lee '74, Altarelli & Maiani '74
- Is the remaining contribution coming from non-perturbative QCD ? \longrightarrow task for lattice QCD
 - \Rightarrow Can we extract an explanation for this phenomena ?

Computation of $K \rightarrow \pi \pi$ amplitudes

Overview of the computation

Operator Product expansion

Describe $K o (\pi\pi)_{I=0,2}$ with an effective Hamiltonian [Buchalla, Buras, Lautenbacher '96]

$$H^{\Delta s=1} = \frac{G_F}{\sqrt{2}} \Big\{ \sum_{i=1}^{10} \left(V_{ud} V_{us}^* z_i(\mu) - V_{td} V_{ts}^* y_i(\mu) \right) Q_i(\mu) \Big\}$$

Overview of the computation

Operator Product expansion

Describe $K o (\pi\pi)_{I=0,2}$ with an effective Hamiltonian [Buchalla, Buras, Lautenbacher '96]

$$H^{\Delta s=1} = \frac{G_F}{\sqrt{2}} \Big\{ \sum_{i=1}^{10} \left(V_{ud} V_{us}^* z_i(\mu) - V_{td} V_{ts}^* y_i(\mu) \right) Q_i(\mu) \Big\}$$

- Amplitude given by $A \propto \langle \pi \pi | H^{\Delta s=1} | K \rangle$
- Short distance effects factorized in the Wilson coefficients y_i , z_i , computed at NLO in [BBL '96]
- Long distance effects factorized in the matrix elements

 $\langle \pi \pi | Q_i(\mu) | K \rangle \longrightarrow$ task for the Lattice

See reviews by [Christ @ Kaon'09, Lellouch @ Les Houches'09, Sachrajda @ Lattice '10], ...

Nicolas Garron (Plymouth University)	$K \rightarrow \pi \pi$ Decays and the $\Delta I = 1/2$ rule	June 29th , 2015 9 / 31
--------------------------------------	--	-------------------------

4-quark operators

$$Q_1 = (\bar{s}d)_{V-A}(\bar{u}u)_{V-A}$$
 $Q_2 = \text{color mixed}$

4-quark operators

$$\begin{split} &Q_7 = \frac{3}{2}(\bar{s}d)_{\mathrm{V-A}} \sum_{q=u,d,s} e_q(\bar{q}q)_{\mathrm{V+A}} \qquad Q_8 = \text{color mixed} \\ &Q_9 = \frac{3}{2}(\bar{s}d)_{\mathrm{V-A}} \sum_{q=u,d,s} e_q(\bar{q}q)_{\mathrm{V-A}} \qquad Q_{10} = \text{color mixed} \end{split}$$

Nicolas Garron (Plymouth University)

 $K
ightarrow \pi \, \pi$ Decays and the $\Delta I = 1/2$ rule

4-quark operators

$$\begin{array}{ll} Q_3 = (\bar{s}d)_{\mathrm{V}-\mathrm{A}} \sum_{q=u,d,s} (\bar{q}q)_{\mathrm{V}-\mathrm{A}} & \qquad Q_4 = \mathsf{color} \; \mathsf{mixed} \\ \\ Q_5 = (\bar{s}d)_{\mathrm{V}-\mathrm{A}} \sum_{q=u,d,s} (\bar{q}q)_{\mathrm{V}+\mathrm{A}} & \qquad Q_6 = \mathsf{color} \; \mathsf{mixed} \end{array}$$

Nicolas Garron (Plymouth University)

 ${\cal K}\,\rightarrow\,\pi\,\pi$ Decays and the $\Delta I\,=\,1/2$ rule

Irrep of $SU(3)_L \otimes SU(3)_R$

$$\overline{3} \otimes 3 = 8 + 1$$

 $\overline{8} \otimes 8 = 27 + \overline{10} + 10 + 8 + 8 + 1$

Relevant operators transform under (27, 1), (8, 8) and (8, 1) of $SU(3)_L \otimes SU(3)_R$

Irrep of $SU(3)_L \otimes SU(3)_R$

$$\overline{3} \otimes 3 = 8 + 1$$

 $\overline{8} \otimes 8 = 27 + \overline{10} + 10 + 8 + 8 + 1$

Relevant operators transform under (27, 1), (8, 8) and (8, 1) of $SU(3)_L \otimes SU(3)_R$

Decomposition of the 4-quark operators gives

$$\begin{array}{rcl} Q_{1,2} & = & Q_{1,2}^{(27,1),\Delta I=3/2} + Q_{1,2}^{(27,1),\Delta I=1/2} + Q_{1,2}^{(8,8),\Delta I=1/2} \\ Q_{3,4} & = & & Q_{3,4}^{(8,1),\Delta I=1/2} \\ Q_{5,6} & = & & Q_{5,6}^{(8,1),\Delta I=1/2} \\ Q_{7,8} & = & Q_{7,8}^{(8,8),\Delta I=3/2} + Q_{7,8}^{(8,8),\Delta I=1/2} \\ Q_{9,10} & = & Q_{9,10}^{(27,1),\Delta I=3/2} + Q_{9,10}^{(27,1),\Delta I=1/2} + Q_{9,10}^{(8,8),\Delta I=1/2} \end{array}$$

see eg [Claude Bernard @ TASI'89] and [RBC'01]

Nicolas Garron (Plymouth University)

Only 7 are independent: one (27, 1) four (8, 1), and two (8, 8), \Rightarrow we call them Q'

$$(27,1) \quad Q'_1 = Q'^{(27,1),\Delta I=3/2}_1 + Q'^{(27,1),\Delta I=1/2}_1$$

$$\begin{array}{rcl} (8,1) & Q_2' & = & & Q_2'^{(8,1),\Delta l=1/2} \\ & Q_3' & = & & Q_3'^{(8,1),\Delta l=1/2} \end{array}$$

$$\begin{array}{rcl} (8,8) & Q_7' & = & Q_7'^{(8,8),\Delta I=3/2} + Q_7'^{(8,8),\Delta I=1/2} \\ & Q_8' & = & Q_8'^{(8,8),\Delta I=3/2} + Q_8'^{(8,8),\Delta I=1/2} \end{array}$$

Only 7 are independent: one (27, 1) four (8, 1), and two (8, 8), \Rightarrow we call them Q'

(27, 1)	Q_1'	=	$Q_1^{\prime(27,1),\Delta I=3/2} + Q_1^{\prime(27,1),\Delta I=1/2}$
(8,1)	Q_2'	=	$Q_2^{\prime(8,1),\Delta I=1/2}$
	Q'_3	=	$Q_3'^{(8,1),\Delta l=1/2}$
	Q_5'	=	$Q_5'^{(8,1),\Delta l=1/2}$
	Q_6'	=	$Q_6'^{(8,1),\Delta l=1/2}$
(8,8)	Q_7'	=	$Q_7^{\prime(8,8),\Delta I=3/2} + Q_7^{\prime(8,8),\Delta I=1/2}$
	Q_8'	=	$Q_8^{\prime(8,8),\Delta I=3/2} + Q_8^{\prime(8,8),\Delta I=1/2}$

Only 3 operators contribute to the $\Delta I = 3/2$ chanel

Many obstacles:

- Final state with two pions
- Many operators that mix under renormalisation
- Require the evaluation of disconnected graphs

Need to preserve chiral-flavour symetry at finite lattice spacing

Plus the usual difficulties: light dynamical quarks, large volume, ...

Isospin channels

• Only 3 of these operators contribute to the $\Delta I = 3/2$ channel

- A tree-level operator
- 2 electroweak penguins
- No disconnect graphs contribute to the $\Delta I = 3/2$ channel

 $\Rightarrow A_2$ is much simpler than A_0

Still highly non-trivial, but perfect challenge for lattice QCD with chiral fermions

Lattice computation of A_2

- First problem: the two-pion state
 - \Rightarrow Lellouch-Lüscher method [Lellouch, Lüscher '00] to obtain the physical matrix element from the finite-volume Euclidiean amplitude and the derivative of the phase shift

- First problem: the two-pion state
 - \Rightarrow Lellouch-Lüscher method [Lellouch, Lüscher '00] to obtain the physical matrix element from the finite-volume Euclidiean amplitude and the derivative of the phase shift
- Unfortunately this implies that the desired physical state is an excited one (difficult to extract)
 ⇒ For A₂, combine
 - Wigner-Eckart theorem (Exact up to isospin symmetry breaking)

$$\langle \pi^{+}(p_{1})\pi^{0}(p_{2})|O_{\Delta I_{Z}=1/2}^{\Delta I=3/2}|K^{+}\rangle = 3/2\langle \pi^{+}(p_{1})\pi^{+}(p_{2})|O_{\Delta I_{Z}=3/2}^{\Delta I=3/2}|K^{+}\rangle$$

and then compute the unphysical process ${\it K}^+ \rightarrow \pi^+ \pi^+$

• Use Anti-periodic B.C. to eliminate the unwanted (wrong-kinematic) state

[Kim '04, Sachrajda & Villadoro '05]

• Once the bare matrix elements have been computed, they have to be renormalised and matched to the continuum (e.g. $\overline{\rm MS}$)

- Once the bare matrix elements have been computed, they have to be renormalised and matched to the continuum (e.g. MS)
- A popular way is the Rome-Southampton technique [Martinelli, Pittori, Sachrajda, Testa, Vladikas '94]
 The method requires the existence of a "windows" (a is the lattice spacing)

 $\Lambda_{QCD} \ll \mu \ll \pi/a$

- Once the bare matrix elements have been computed, they have to be renormalised and matched to the continuum (e.g. MS)
- A popular way is the Rome-Southampton technique [Martinelli, Pittori, Sachrajda, Testa, Vladikas '94] The method requires the existence of a "windows" (a is the lattice spacing)

 $\Lambda_{QCD} \ll \mu \ll \pi/a$

- On the other hand, dealing with a 2-pion state requires a large physical volume
 - \Rightarrow Our first computation of A₂ was performed on coarse lattice (a \sim 0.14 fm, L \sim 4.5 fm)
 - \Rightarrow The Rome-Southampton condition was not satisfied

- Once the bare matrix elements have been computed, they have to be renormalised and matched to the continuum (e.g. MS)
- A popular way is the Rome-Southampton technique [Martinelli, Pittori, Sachrajda, Testa, Vladikas '94] The method requires the existence of a "windows" (a is the lattice spacing)

 $\Lambda_{QCD} \ll \mu \ll \pi/a$

- On the other hand, dealing with a 2-pion state requires a large physical volume
 - \Rightarrow Our first computation of A₂ was performed on coarse lattice (a \sim 0.14 fm, L \sim 4.5 fm)
 - ⇒ The Rome-Southampton condition was not satisfied
- Solution

Renormalise at low energy $\mu_0\sim 1.1~{\rm GeV}$ on and run non-perturbatively using finer lattices to $\mu=3~{\rm GeV}$ and match to $\overline{\rm MS}~$ [Arthur, Boyle '10, Arthur, Boyle, N.G., Kelly, Lytle '11]

$$\lim_{a_1 \to 0} \underbrace{\left[Z(\mu_1, a_1) Z^{-1}(\mu_0, a_1) \right]}_{\text{fine lattice}} \times \underbrace{Z(\mu_0, a_0)}_{\text{coarse lattice}} = Z(\mu_1, a_0)$$

- Very challenging both theoretically and numerically
- Computation performed with state-of-the-art algorithm and large-scale computer resources
- Possible because of the development of various methods

- Very challenging both theoretically and numerically
- Computation performed with state-of-the-art algorithm and large-scale computer resources
- Possible because of the development of various methods

Blum, Boyle, Christ, N.G., Goode, Izubuchi, Jung, Kelly, Lehner, Lightman, Liu, Lytle, Mawhinney, Sachrajda, Soni, Sturm, PRL'12, PRD'12

- **2** + 1 chiral fermions (Domain-Wall on IDSDR $a \sim 0.14$ fm)
- Ightest unitary pion mass $\sim 170 \text{ MeV}$ (partially quenched 140 MeV)
- Physical kinematics
- Non-perturbative-renormalization through RI-SMOM schemes

- Very challenging both theoretically and numerically
- Computation performed with state-of-the-art algorithm and large-scale computer resources
- Possible because of the development of various methods

Blum, Boyle, Christ, N.G., Goode, Izubuchi, Jung, Kelly, Lehner, Lightman, Liu, Lytle, Mawhinney, Sachrajda, Soni, Sturm, PRL'12, PRD'12

- **2** + 1 chiral fermions (Domain-Wall on IDSDR $a \sim 0.14$ fm)
- lightest unitary pion mass ~ 170 MeV (partially quenched 140 MeV)
- Physical kinematics
- Non-perturbative-renormalization through RI-SMOM schemes

Find $\text{ReA}_2 = 1.381(46)_{\text{stat}}(258)_{\text{syst}}10^{-8}$ GeV, experimental value is $1.479(4) 10^{-8}$ GeV

• And $ImA_2 = -6.54(46)_{stat}(120)_{syst}$ GeV

- Very challenging both theoretically and numerically
- Computation performed with state-of-the-art algorithm and large-scale computer resources
- Possible because of the development of various methods

Blum, Boyle, Christ, N.G., Goode, Izubuchi, Jung, Kelly, Lehner, Lightman, Liu, Lytle, Mawhinney, Sachrajda, Soni, Sturm, PRL'12, PRD'12

- **2** + 1 chiral fermions (Domain-Wall on IDSDR $a \sim 0.14$ fm)
- Ightest unitary pion mass $\sim 170 \text{ MeV}$ (partially quenched 140 MeV)
- Physical kinematics
- Non-perturbative-renormalization through RI-SMOM schemes
- Find $\text{ReA}_2 = 1.381(46)_{\text{stat}}(258)_{\text{syst}}10^{-8}$ GeV, experimental value is $1.479(4) 10^{-8}$ GeV
- And $Im A_2 = -6.54(46)_{stat}(120)_{syst}$ GeV
- Important computation in the field: first realistic computation of a hadronic decay
- Main limitation: single (and rather coarse) lattice spacing

Nicolas Garron (Plymouth University)

2014-2015 update

Main limitation on the previous computation : only one coarse lattice spacing IDSDR $32^3 \times 64$, with $a^{-1} \sim 1.37 \text{ GeV} \Rightarrow a \sim 0.14 \text{ fm}$, $L \sim 4.6 \text{ fm}$

- Main limitation on the previous computation : only one coarse lattice spacing IDSDR $32^3 \times 64$, with $a^{-1} \sim 1.37 \text{ GeV} \Rightarrow a \sim 0.14 \text{ fm}$, $L \sim 4.6 \text{ fm}$
- New computation:

two lattice spacing, $n_f = 2 + 1$, large volume at the physical point New discretisation of the Domain-Wall fermion forumlation: Möbius Brower, Neff, Orginos '12

- $48^3 \times 96$, with $a^{-1} \sim 1.729 \text{ GeV} \Rightarrow a \sim 0.11 \text{ fm}$, $L \sim 5.5 \text{ fm}$
- $64^3 \times 128$ with $a^{-1} \sim 2.358$ GeV $\Rightarrow a \sim 0.084$ fm, $L \sim 5.4$ fm
- \blacksquare am_{res} $\sim 10^{-4}$

2012 Blum, Boyle, Christ, N.G., Goode, Izubuchi, Jung, Kelly, Lehner, Lightman, Liu, Lytle, Mawhinney, Sachrajda, Soni, Sturm, PRL'12, PRD'12 Re $A_2 = 1.381(46)_{stat}(258)_{syst} 10^{-8} \text{ GeV}$ Im $A_2 = -6.54(46)_{stat}(120)_{syst} 10^{-13} \text{ GeV}$

see also talk by T.Janowski @ lat'13

$K ightarrow (\pi\pi)_0$ and the $\Delta I = 1/2$ rule

A₀ from RBC-UKQCD (2011)

"Pilot" computation of the full process

T. Blum, Boyle, Christ, N.G., Goode, Izubuchi, Lehner, Liu, Mawhinney, Sachrajda, Soni, Sturm, Yin, Zhou, PRD'11.

Unphysical:

- "Heavy" pions (lightest $\sim m_{\pi} \sim 300 \text{ MeV}$), small volume
- Non-physical kinematics: pions at rest

A₀ from RBC-UKQCD (2011)

"Pilot" computation of the full process

T. Blum, Boyle, Christ, N.G., Goode, Izubuchi, Lehner, Liu, Mawhinney, Sachrajda, Soni, Sturm, Yin, Zhou, PRD'11.

Unphysical:

- "Heavy" pions (lightest $\sim m_{\pi} \sim 300 \text{ MeV}$), small volume
- Non-physical kinematics: pions at rest

But "complete":

- Two-pion state
- All the contractions of the 7 fourk-operators are computed
- Renormalisation done non-perturbatively

A₀ from RBC-UKQCD (2011)

"Pilot" computation of the full process

T. Blum, Boyle, Christ, N.G., Goode, Izubuchi, Lehner, Liu, Mawhinney, Sachrajda, Soni, Sturm, Yin, Zhou, PRD'11.

Unphysical:

- "Heavy" pions (lightest $\sim m_{\pi} \sim 300$ MeV), small volume
- Non-physical kinematics: pions at rest

But "complete":

- Two-pion state
- All the contractions of the 7 fourk-operators are computed
- Renormalisation done non-perturbatively

obtain

$$\begin{aligned} &\mathrm{Re}\,A_0 &= 3.80(82)\times 10^{-7}\mathrm{GeV} \\ &\mathrm{Im}\,A_0 &= -2.5(2.2)\times 10^{-11}\mathrm{GeV} \end{aligned}$$

	1/ <i>a</i> [GeV]	m_{π} [MeV]	<i>т</i> к [MeV]	ReA ₂ [10 ⁻⁸ GeV]	Re <i>A</i> 0 [10 ⁻⁸ GeV]	$\frac{\operatorname{Re}A_0}{\operatorname{Re}A_2}$	kinematics
16 ³ IW	1.73(3)	422(7)	878(15)	4.911(31)	45(10)	9.1(2.1)	threshold
24 ³ IW	1.73(3)	329(6)	662(11)	2.668(14)	32.1(4.6)	12.0(1.7)	threshold
32 ³ ID	1.36(1)	142.9(1.1)	511.3(3.9)	1.38(5)(26)	-	-	physical
Exp	-	135 - 140	494 - 498	1.479(4)	33.2(2)	22.45(6)	

Pattern which could explain the $\Delta I = 1/2$ enhancement

Boyle, Christ, N.G., Goode, Izubuchi, Janowski, Lehner, Liu, Lytle, Sachrajda, Soni, Zhang, PRL'13

Nicolas Garron (Plymouth University)

Two kinds of contraction for each $\Delta I=3/2$ operator

 $\mathsf{Contraction}\ \textcircled{1}$

Contraction (2)

Two kinds of contraction for each $\Delta I = 3/2$ operator

 $\mathsf{Contraction}\ (\mathrm{I})$

Contraction (2)

= Re A_2 is dominated by the tree level operator (EWP \sim 1%)

 $ReA_2 \sim (1) + (2)$

Two kinds of contraction for each $\Delta I = 3/2$ operator

 $\mathsf{Contraction}\ (\underline{\mathbb{T}})$

Contraction (2)

Re A_2 is dominated by the tree level operator (EWP \sim 1%)

 $ReA_2 \sim (1) + (2)$

• Naive factorisation approach: $2 \sim 1/3$

Two kinds of contraction for each $\Delta I = 3/2$ operator

 $\mathsf{Contraction}\ (\underline{1})$

Contraction (2)

Re A_2 is dominated by the tree level operator (EWP \sim 1%)

 $ReA_2 \sim (1) + (2)$

- Naive factorisation approach: $(2) \sim 1/3$
- Our computation: $2 \sim -0.7$

 \Rightarrow large cancellation in ReA₂

 ReA_0 is also dominated by the tree level operators

ReA₀ is also dominated by the tree level operators

Dominant contribution to Q_2^{lat} is $\propto (22 - \textcircled{1}) \Rightarrow$ Enhancement in ReA₀

ReA₀ is also dominated by the tree level operators

Dominant contribution to Q_2^{lat} is $\propto (22 - \textcircled{1}) \Rightarrow$ Enhancement in ReA₀

${ m Re}A_0$		2(2) - (1)				
ReA_2	\sim	1+2				

ReA₀ is also dominated by the tree level operators

Dominant contribution to $Q_2^{\rm lat}$ is \propto (22 – 1) \Rightarrow Enhancement in ReA₀

$\mathrm{Re}A_0$		2② -	ⓓ
ReA_2	\sim	① +	2

With this unphysical computation (kinematics, masses) we find

 $\frac{\text{Re}A_0}{\text{Re}A_2} = 9.1(2.1) \text{ for } m_K = 878 \text{ MeV } m_\pi = 422 \text{ MeV}$ $= 12.0(1.7) \text{ for } m_K = 662 \text{ MeV } m_\pi = 329 \text{ MeV}$

- Relative sign between ① and ② implies both a cancellation in ReA_2 and an enhancement in ReA_0
- Analytic work in that direction, e.g. Pich, de Rafael '96, Bardeen, Buras, Gerard '87
- See also discussion in Lellouch @ Les Houches '09

- Relative sign between ① and ② implies both a cancellation in ReA_2 and an enhancement in ReA_0
- Analytic work in that direction, e.g. Pich, de Rafael '96, Bardeen, Buras, Gerard '87
- See also discussion in Lellouch @ Les Houches '09
- Similar observation done by another very recent lattice computation Ishizuka, Ishikawa, Ukawa, Yoshié '15
 - $K
 ightarrow \pi\pi$ amplitudes with unphysical kinematics (and Wilson fermions)

- First complete computation of $K \to \pi\pi$ (both isospin channel) with physical kinematics Bai, Blum, Boyle, Christ, Frison, N.G., Izubuchi, Jung, Kelly, Lehner, Mawhinney, Sachrajda, Soni, Zhang
- Pion mass $m_{\pi} = 143.1(2.0)$ MeV, single lattice spacing $a \sim 0.14$ fm
- Physical kinematics achieved with G-Parity boundary conditions

Kim, Christ, '03 and '09

- Requires algorithmic development, dedicated generation of gauge configurations, ...
- See talk by C.Kelly and proceeding from Lattice'14

After renormalisation at $\mu \sim 1.5~{\rm GeV},$ we combine with the Wilson coefficients and find

i	$\operatorname{Re}(A_0)(\operatorname{GeV})$	$Im(A_0)(GeV)$			
1	$1.02(0.20)(0.07) \times 10^{-7}$	0			
2	$3.63(0.91)(0.28) \times 10^{-7}$	0			
2	1 10(1 50)(1 10) 10=10	1 54(0.04)(1.45) 10=12			
3	$-1.19(1.58)(1.12) \times 10^{-10}$	$1.54(2.04)(1.45) \times 10^{-12}$			
4	$-1.86(0.63)(0.33) imes 10^{-9}$	$1.82(0.62)(0.32) \times 10^{-11}$			
5	$-8.72(2.17)(1.80) \times 10^{-10}$	$1.57(0.39)(0.32) \times 10^{-12}$			
6	$3.33(0.85)(0.22) \times 10^{-9}$	$-3.57(0.91)(0.24) imes 10^{-11}$			
7	$2.40(0.41)(0.00) imes 10^{-11}$	$8.55(1.45)(0.00) imes10^{-14}$			
8	$-1.33(0.04)(0.00) \times 10^{-10}$	$-1.71(0.05)(0.00) \times 10^{-12}$			
9	$-7.12(1.90)(0.46) \times 10^{-12}$	$-2.43(0.65)(0.16) \times 10^{-12}$			
10	$7.57(2.72)(0.71) \times 10^{-12}$	$-4.74(1.70)(0.44) \times 10^{-13}$			
Tot	$4.66(0.96)(0.27) imes 10^{-7}$	$-1.90(1.19)(0.32) imes 10^{-11}$			
Exp	$3.3201(18) imes 10^{-7}$	-			

Standard model prediction for ε'/ε

 ε'/ε can be computed from

$${\it Re}(arepsilon'/arepsilon) = {\it Re}\left\{rac{i\omega\exp(i\delta_2-\delta_0)}{\sqrt{2}arepsilon}\left[rac{{
m Im}(A_2)}{{
m Re}A_2}-rac{{
m Im}A_0}{{
m Re}A_0}
ight]
ight\}$$

Combining our new value of $Im A_0$ and δ_0 with

- our continuum value for ImA2
- the experimental value for ReA_0 , ReA_2 and their ratio ω

we find

$$Re(\varepsilon'/\varepsilon) = 1.38(5.15)(4.43) \times 10^{-4}$$

whereas the experimental value is

$$Re(arepsilon'/arepsilon) = 16.6(2.3) imes 10^{-4}$$

Conclusions, outlook

Finally, a complete computation for $K \to \pi\pi$, with physical quark masses and physical kinematics

- A₂ now extrapolated to the continuum limit
- Very recent computation of A₀ with physical setup at single lattice spacing
- Only approximate agreement for ε'/ε
- Observe a mechanism which contributes to a large enhancement in A_0/A_2
- Clearly shows the need for a non-perturbative method
- Precision still far from the experimental one, but provide a value for ImA_2 and ImA_0

Conclusions. outlook

Finally, a complete computation for $K \to \pi \pi$, with physical guark masses and physical kinematics

- A₂ now extrapolated to the continuum limit
- Very recent computation of A_0 with physical setup at single lattice spacing
- Only approximate agreement for ε'/ε
- Observe a mechanism which contributes to a large enhancement in A_0/A_2
- Clearly shows the need for a non-perturbative method
- Precision still far from the experimental one, but provide a value for ImA_2 and ImA_0

This was possible because of important hardware and algorithmic improvement,

but also because of the development of new theoretical methods, techniques, tricks, ideas ...

Conclusions, outlook

Finally, a complete computation for $K \to \pi \pi$, with physical quark masses and physical kinematics

- A₂ now extrapolated to the continuum limit
- Very recent computation of A₀ with physical setup at single lattice spacing
- Only approximate agreement for ε'/ε
- Observe a mechanism which contributes to a large enhancement in A_0/A_2
- Clearly shows the need for a non-perturbative method
- Precision still far from the experimental one, but provide a value for ImA_2 and ImA_0

This was possible because of important hardware and algorithmic improvement, but also because of the development of new theoretical methods, techniques, tricks, ideas...

For A_0 , it is only the beginning:

- statistical error should be reduced
- Renormalisation at higher energy (now $\mu \sim 1.5~{
 m GeV}$)
- Finer lattice and continuum limit

Backup

	1/ <i>a</i> [GeV]	m_{π} [MeV]	<i>т</i> _К [MeV]	Re <i>A</i> 2 [10 ⁻⁸ GeV]	Re <i>A</i> 0 [10 ⁻⁸ GeV]	$\frac{\text{Re}A_0}{\text{Re}A_2}$	kinematics
16 ³ IW	1.73(3)	422(7)	878(15)	4.911(31)	45(10)	9.1(2.1)	threshold
24 ³ IW	1.73(3)	329(6)	662(11)	2.668(14)	32.1(4.6)	12.0(1.7)	threshold
32 ³ ID	1.36(1)	142.9(1.1)	511.3(3.9)	1.38(5)(26)	-	-	physical
cont.	-	139	497-507	1.50(4)(14)	-	-	physical
32 ³ ID	1.36(1)	143.1(2.0)	490.6(2.4)	-	46.6(10.0)(12.1)	-	physical
Exp	_	135 - 140	494 - 498	1.479(4)	33.2(2)	22.45(6)	

2+1 Domain-Wall fermions

Chiral-Flavour symmetry (almost) exact at finite lattice spacing

2+1 Domain-Wall fermions

Chiral-Flavour symmetry (almost) exact at finite lattice spacing

Finite fith dimension $L_s \rightarrow$ small additive quark mass renormalisation m_{res}

■ 2008: IW $a^{-1} = 1.729(18)$ GeV $\leftrightarrow a \sim 0.1145$ fm, on $24^3 \times 64 \times 16$, ie $L \sim 2.74$ fm

Unitary pion masses $m_{\pi} = 331, 419, (557)$ MeV

2+1 Domain-Wall fermions

Chiral-Flavour symmetry (almost) exact at finite lattice spacing

- 2008: IW $a^{-1} = 1.729(18)$ GeV $\leftrightarrow a \sim 0.1145$ fm, on $24^3 \times 64 \times 16$, ie $L \sim 2.74$ fm Unitary pion masses $m_{\pi} = 331, 419, (557)$ MeV
- 2010: IW $a^{-1} = 2.282(28)$ GeV $\leftrightarrow a \sim 0.0868$ fm, on $32^3 \times 64 \times 16$, ie $L \sim 2.77$ fm Unitary pion masses $m_{\pi} = 290, 345, 394$ MeV

2+1 Domain-Wall fermions

Chiral-Flavour symmetry (almost) exact at finite lattice spacing

- 2008: IW $a^{-1} = 1.729(18)$ GeV $\leftrightarrow a \sim 0.1145$ fm, on $24^3 \times 64 \times 16$, ie $L \sim 2.74$ fm Unitary pion masses $m_{\pi} = 331, 419, (557)$ MeV
- 2010: IW $a^{-1} = 2.282(28)$ GeV $\leftrightarrow a \sim 0.0868$ fm, on $32^3 \times 64 \times 16$, ie $L \sim 2.77$ fm Unitary pion masses $m_{\pi} = 290, 345, 394$ MeV
- 2012: IDSDR $a^{-1} = 1.372(10)$ GeV $\leftrightarrow a \sim 0.144$ fm, on $32^3 \times 64 \times 32$, ie $L \sim 4.62$ fm Unitary pion mass $m_{\pi} = 171$ MeV

2+1 Domain-Wall fermions

Chiral-Flavour symmetry (almost) exact at finite lattice spacing

- 2008: IW $a^{-1} = 1.729(18)$ GeV $\leftrightarrow a \sim 0.1145$ fm, on $24^3 \times 64 \times 16$, ie $L \sim 2.74$ fm Unitary pion masses $m_{\pi} = 331, 419, (557)$ MeV
- 2010: IW $a^{-1} = 2.282(28)$ GeV $\leftrightarrow a \sim 0.0868$ fm, on $32^3 \times 64 \times 16$, ie $L \sim 2.77$ fm Unitary pion masses $m_{\pi} = 290, 345, 394$ MeV
- 2012: IDSDR $a^{-1} = 1.372(10)$ GeV $\leftrightarrow a \sim 0.144$ fm, on $32^3 \times 64 \times 32$, ie $L \sim 4.62$ fm Unitary pion mass $m_{\pi} = 171$ MeV
- 2014: Möbius, Unitary pion mass 139 MeV
 - $a^{-1} = 1.730(4)$ GeV $\leftrightarrow a \sim 0.1145$ fm, on $48^3 \times 96 \times 24$ ie $L \sim 4.62$ fm
 - $a^{-1} = 2.359(7)$ GeV $\leftrightarrow a \sim 0.0839$ fm, on $64^3 \times 128 \times 12$ ie $L \sim 5.475$ fm