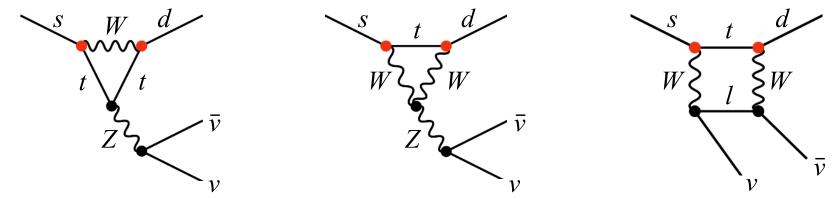
$K_L \rightarrow \pi^0 vv$: Results and prospects

Frontier Objects in Astrophysics and Particle Physics Vulcano, 25 May 2018

Matthew Moulson INFN Frascati


moulson@Inf.infn.it

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati

$K \rightarrow \pi v \bar{v}$ in the Standard Model

FCNC processes dominated by Z-penguin and box amplitudes:

Extremely rare decays with rates very precisely predicted in SM:

- Hard GIM mechanism + pattern of CKM suppression $(V_{ts}^* V_{td})$
- No long-distance contributions from amplitudes with intermediate photons
- Hadronic matrix element obtained from $BR(K_{e3})$ via isospin rotation

	SM predicted rates Buras et al, JHEP 1511*	Experimental status
$K^+ \rightarrow \pi^+ v \overline{v}$	BR = (8.4 ± 1.0) × 10 ⁻¹¹	BR = (17.3 $^{+11.5}_{-10.5}$) × 10 ⁻¹¹ Stopped <i>K</i> ⁺ , 7 events observed BNL 787/949, PRD79 (2009)
$K_L \rightarrow \pi^0 v \overline{v}$	BR = (3.4 ± 0.6) × 10 ⁻¹¹	BR < 2600 × 10⁻¹¹ 90%CL KEK 391a, PRD81 (2010)

* Tree-level determinations of CKM matrix elements

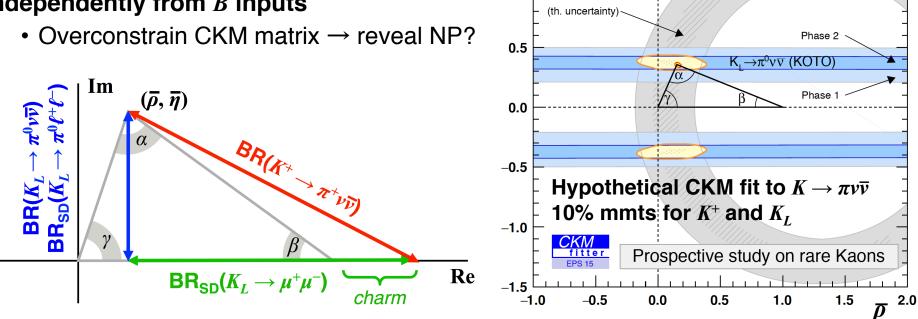
$K \rightarrow \pi v \bar{v}$ and the unitarity triangle

Dominant uncertainties for SM BRs are from CKM matrix elements

$$BR(K^{+} \to \pi^{+} v \bar{v}) = (8.39 \pm 0.30) \times 10^{-11} \cdot \left[\frac{|V_{cb}|}{0.0407}\right]^{2.8} \cdot \left[\frac{\gamma}{73.2^{\circ}}\right]^{0.74}$$

Buras et al., JHEP 1511
$$BR(K_{L} \to \pi^{0} v \bar{v}) = (3.36 \pm 0.05) \times 10^{-11} \cdot \left[\frac{|V_{ub}|}{3.88 \times 10^{-3}}\right]^{2} \cdot \left[\frac{|V_{cb}|}{0.0407}\right]^{2} \cdot \left[\frac{\sin \gamma}{\sin 73.2^{\circ}}\right]^{2}$$

1.5

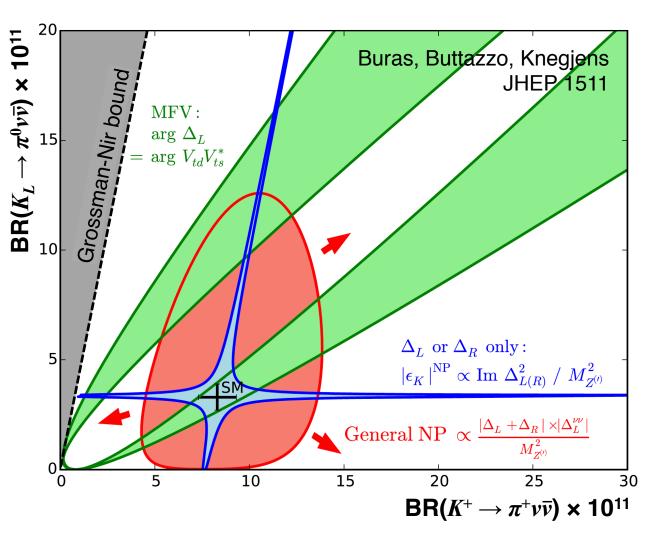

1.0

excluded area has CL > 0.9

n

Intrinsic theory uncertainties ~ few percent

Measuring both K^+ and K_L BRs can determine the CKM unitarity triangle independently from *B* inputs



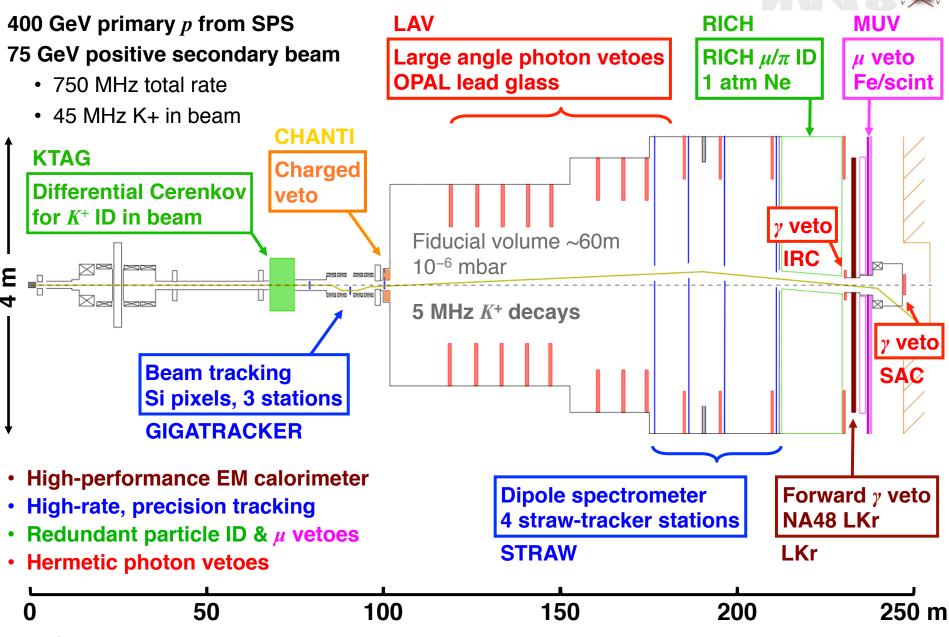
 $K_L \rightarrow \pi^0 vv$: **Results and prospects –** M. Moulson (Frascati) – Vulcano Workshop – 25 May 2018

 $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ (NA62)

$K \rightarrow \pi v \bar{v}$ and new physics

New physics affects BRs differently for K^+ and K_L channels Measurements of both can discriminate among NP scenarios

- Models with CKM-like flavor structure


 Models with MFV
- Models with new flavorviolating interactions in which either LH or RH couplings dominate
 - –Z/Z' models with pure LH/RH couplings
 - –Littlest Higgs with T parity
- Models without above constraints

 Randall-Sundrum

The NA62 experiment at the CERN SPS

The NA62 experiment at the SPS

 $K_L \rightarrow \pi^0 vv$: **Results and prospects –** M. Moulson (Frascati) – Vulcano Workshop – 25 May 2018

NA62

NA62 status and timeline

See talk by G. Ruggiero

2014-2015	Pilot/commissioning runs
2016	Commissioning + 1 st physics run SM sensitivity reached: BR ~ O(10 ⁻¹⁰) First result presented in March 2018
2017	Physics run (23 weeks) 20x more data than 2016 result Data processing in progress
2018	Physics run (31 weeks, started 9 April)
2019-2020	LS2 (LHC Long Shutdown 2)

By end of 2018 NA62 will reach a sensitivity of 20 SM $K^+ \rightarrow \pi^+ vv$ events

- Input to the European Strategy for Particle Physics
- Solid extrapolation to ultimate sensitivity of NA62 achievable after LS2

$K_L \rightarrow \pi^0 v \bar{v}$: Experimental issues

Essential signature: 2γ with unbalanced p_{\perp} + nothing else!

All other K_L decays have $\ge 2 \text{ extra } \gamma \text{s or } \ge 2 \text{ tracks to veto}$ Exception: $K_L \rightarrow \gamma \gamma$, but not a big problem since $p_\perp = 0$

K_L momentum generally is not known $M(\gamma\gamma) = m(\pi^0)$ is the only sharp kinematic constraint

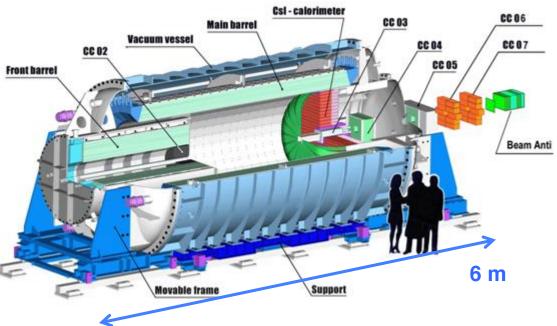
Generally used to reconstruct vertex position

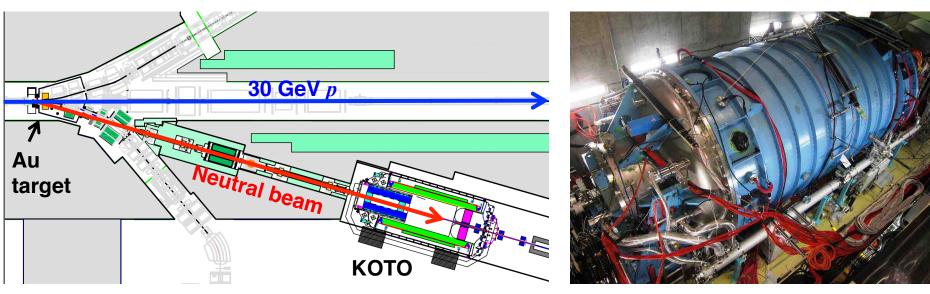
Main backgrounds:

veto R_1 γ_2 R_2 R_2 K_L γ_2 R_2

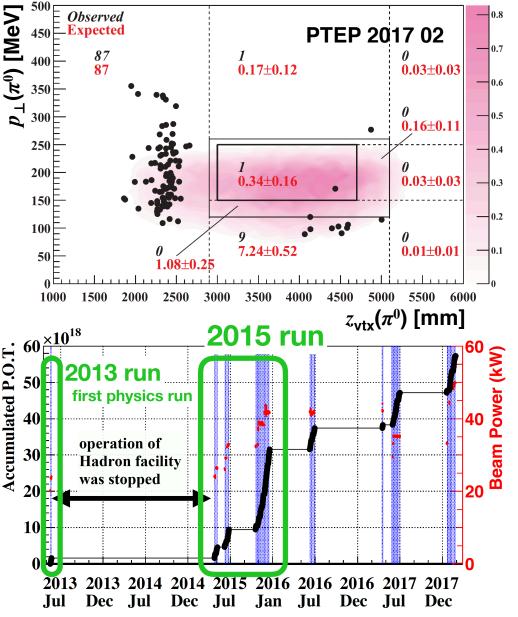
 $m_{\pi^0}^2 = 2E_1 E_2 \left(1 - \cos\theta\right)$

$$R_1 \approx R_2 \equiv R = \frac{d\sqrt{E_1 E_2}}{m_{\pi^0}}$$


Mode	BR	Methods to suppress/reject
$K_L \rightarrow \pi^0 \pi^0$	8.64 × 10 ⁻⁴	γ vetoes, π^0 vertex, p_{\perp}
$K_L \rightarrow \pi^0 \pi^0 \pi^0$	19.52%	γ vetoes, π^0 vertex, p_\perp
$K_L \rightarrow \pi e \nu(\gamma)$	40.55%	Charged particle vetoes, π ID, γ vetoes
$\Lambda \to \pi^0 n$		Beamline length, p_{\perp}
$n + gas \rightarrow X\pi^0$		High vacuum decay region


 $K_L \rightarrow \pi^0 v \bar{v}$ at J-PARC

Primary beam: 30 GeV p100 kW = 1.2 × 10¹⁴ p/6 s


Neutral beam (16°) $\langle p(K_L) \rangle = 2.1 \text{ GeV}$ 50% of K_L have 0.7-2.4 GeV 8 µsr "pencil" beam

 $K_L \rightarrow \pi^0 v \bar{v}$ at J-PARC

KOTO is based on KEK-E391a E391a result = current exp. value: BR($K_L \rightarrow \pi^0 vv$) $\leq 2.6 \times 10^{-8}$ (90%CL)

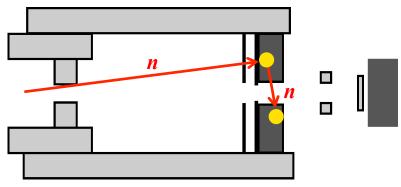
KOTO run history:

2013 pilot run (100 hrs)

 $BR(K_L \to \pi^0 vv) \le 5.1 \times 10^{-8}$ (90%CL)

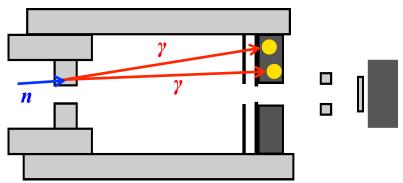
2015 run (result coming soon)

- 40 kW of slow-extracted beam power
- 3e19 pot collected

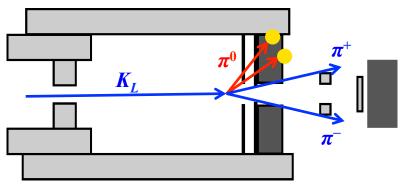

2016-2017

- Beam power increased to 50 kW
- 3e19 pot collected (6e19 total)

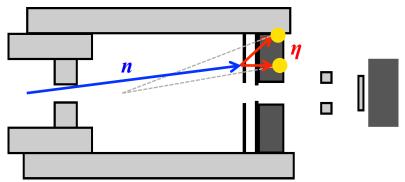
Background rejection


Lessons from 2013 run help to reject backgrounds other than $K_L \rightarrow \pi^0 \pi^0$

1. Hadron clusters on Csl


- Control sample with AI plate in beam
- Cluster and pulse shape analysis

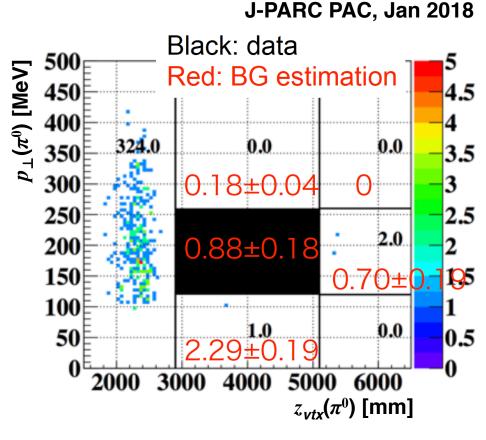
3. $n \rightarrow X\pi^0$ on collar (NCC)


- Beam profile monitor for better alignment
- Thinner vacuum window

2. $K_L \rightarrow \pi^+ \pi^- \pi^0$ with $\pi^+ \pi^-$ escape

• New charged-particle vetoes lining beam exit

4. $n \rightarrow X\eta$ on charged veto (CV)


• Cluster shape (angle of incidence)

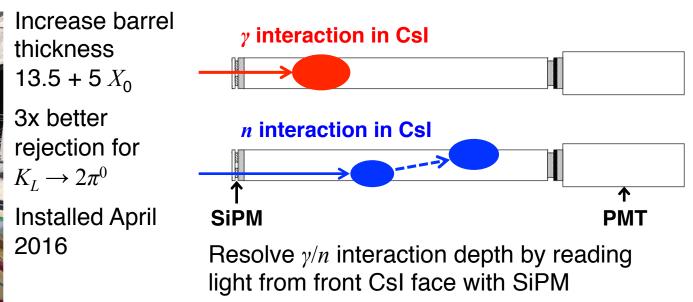
Sensitivity from 2015 data

Background	Expected counts
$K_L \rightarrow 2\pi^0$	0.07 ± 0.07
$K_L \longrightarrow \pi^+ \pi^- \pi^0$	0.18 ± 0.05
$K_L \rightarrow 3\pi^0$	0.17 ± 0.12
$K_L \rightarrow 2\gamma$	0.02 ± 0.02
Hadron cluster	0.26 ± 0.08
π^0 from NCC	0.13 ± 0.07
η from CV	0.05 ± 0.02
Total	0.88 ± 0.18

Preliminary sensitivity, all 2015 data: SES = 1.2×10^{-9} Expected bkg = 0.88 ± 0.18 events Signal box to be opened summer 2018

 K_L flux from $K_L → 2\pi^0 = 4.62 \times 10^{12}$ $\pi^0 vv$ acceptance from MC: Decay in FV: 3.8% Overall acceptance: 1.8 × 10⁻⁴

Upgrades to improve sensitivity



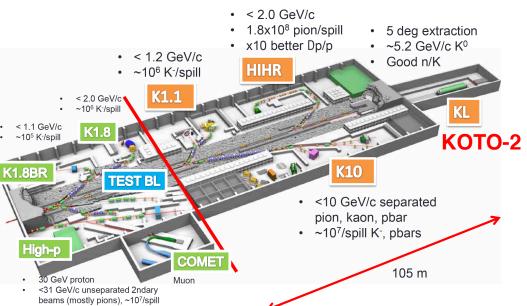
Signal: Need ~40x more flux × acceptance for 1 expected SM $\pi^0 vv$ event

- Beam power expected to increase $50 \rightarrow 100$ kW gradually by 2021
- 20+ months of additional running planned in 2018-2021
- **Background:** Need ~40x more background rejection for S/B ~ 1
 - Continuing program of detector upgrades

Inner barrel veto

SiPMs to be installed summer 2018

Expect to reach SM sensitivity by 2021


 $K_L \rightarrow \pi^0 vv$: **Results and prospects –** M. Moulson (Frascati) – Vulcano Workshop – 25 May 2018

Dual side readout for Csl modules

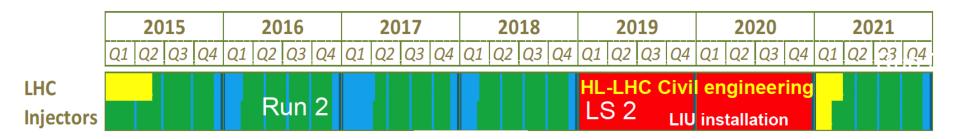
$K_L \rightarrow \pi^0 v \bar{v}$: Long-term plans

KOTO Step-2 upgrade:

- Increase beam power to >100 kW
- New neutral beamline at 5° $\langle p(K_L) \rangle = 5.2 \text{ GeV}$
- Increase FV from 2 m to 11 m Complete rebuild of detector
- Requires extension of hadron hall

Strong intention to upgrade to O(100) event sensitivity over long term:

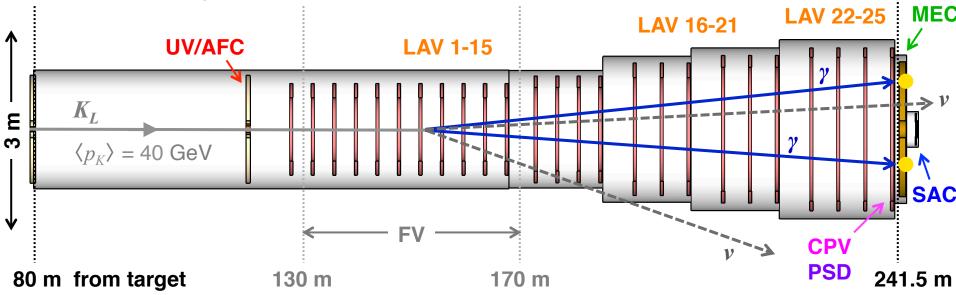
- No official Step 2 proposal yet (plan outlined in 2006 KOTO proposal)
- Scaling KOTO performance for smaller beam angle & larger detector: ~10 SM evts/year per 100 kW beam power?
- Exploring possibilities for machine & detector upgrades to further increase sensitivity


Fixed target runs at the SPS

2021 (Run 3): Intention to continue data taking with NA62

- Measure BR($K^+ \rightarrow \pi^+ \nu \nu$) with ultimate sensitivity
- · Search for hidden particles in beam-dump mode

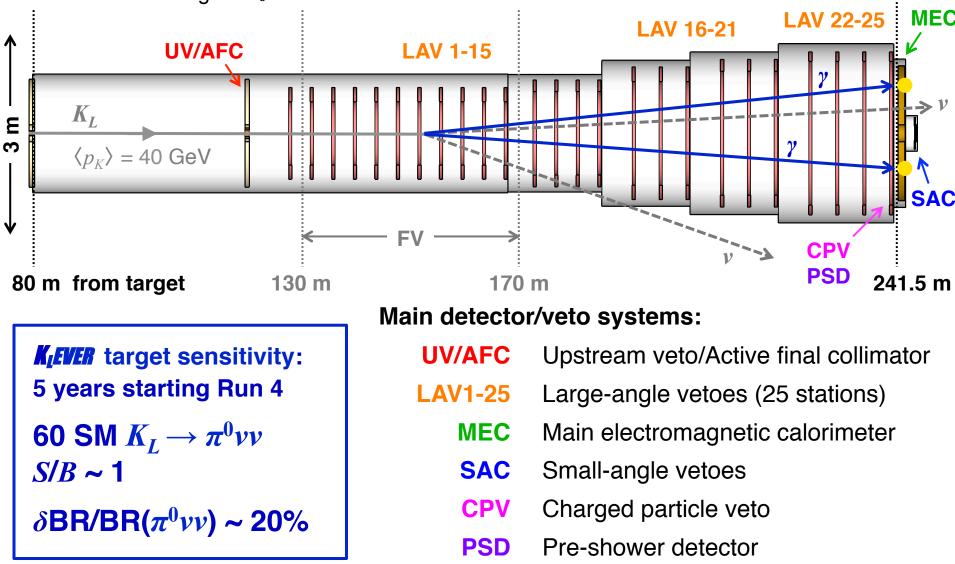
2026 (Run 4): Turn focus to measurement of BR($K_L \rightarrow \pi^0 vv$) \rightarrow **K**_LEVER



F. Bordry, presentation to HEPAP, Dec 2015

A $K_L \rightarrow \pi^0 v \bar{v}$ experiment at the SPS

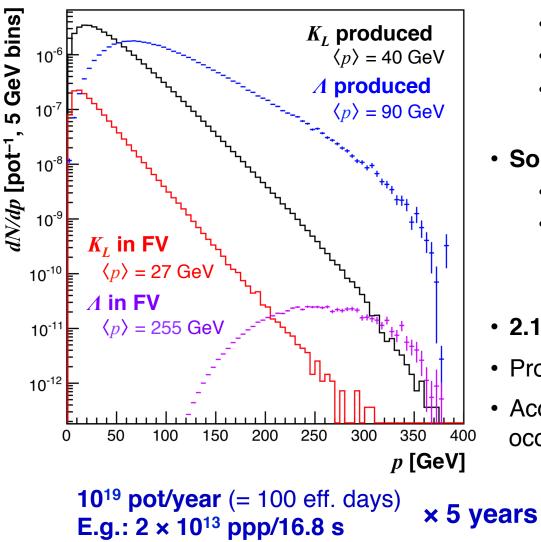
400-GeV SPS proton beam (2 × 10¹³ pot/16.8 s) incident on Be target at z = 0 m



K_L Experiment for VEry Rare events

- High-energy experiment: Complementary to KOTO
- Photons from *K*_L decays boosted forward
 - Makes photon vetoing easier veto coverage only out to 100 mrad
- Roughly same vacuum tank layout and fiducial volume as NA62

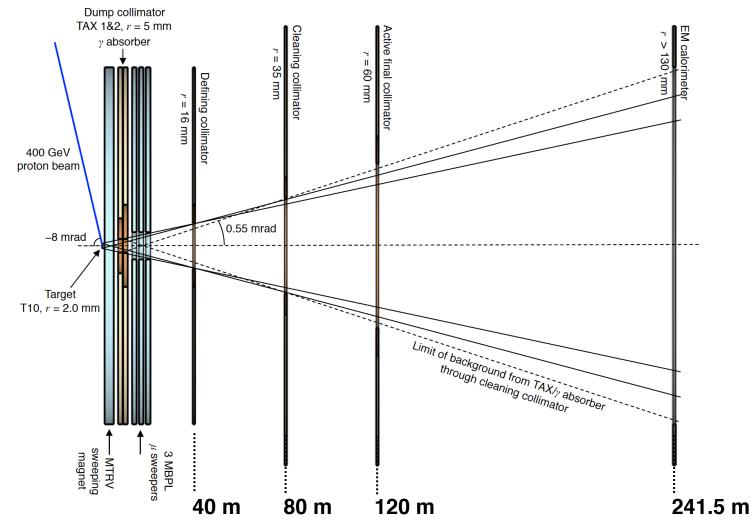
A $K_L \rightarrow \pi^0 v \bar{v}$ experiment at the SPS


400-GeV SPS proton beam (2 × 10¹³ pot/16.8 s) incident on Be target at z = 0 m

Beam and intensity requirements

K_L and Λ fluxes in beam FLUKA simulation

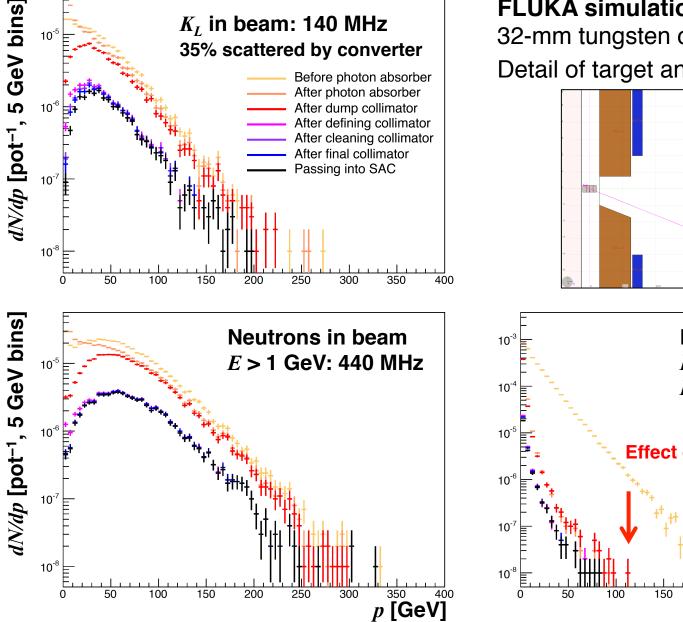
- 400 GeV p on 400 mm Be target
- Production at θ = 8.0 mrad:
 - As much K_L production as possible
 - Low ratio of n/K_L in beam ~ 3
 - Reduce *A* production and soften momentum spectrum
- Solid angle $\Delta \theta = 0.4$ mrad
 - Large $\Delta \theta = \text{high } K_L$ flux
 - Maintain tight beam collimation to improves p_⊥ constraint for background rejection


60 $K_L \rightarrow \pi^0 v v$ events

• 2.1 × 10⁻⁵ K_L in beam/pot

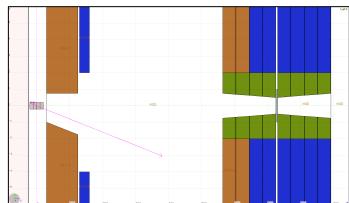
- Probability for decay inside FV $\sim 2\%$
- Acceptance for $K_L \rightarrow \pi^0 v v$ decays occurring in FV ~ 10%

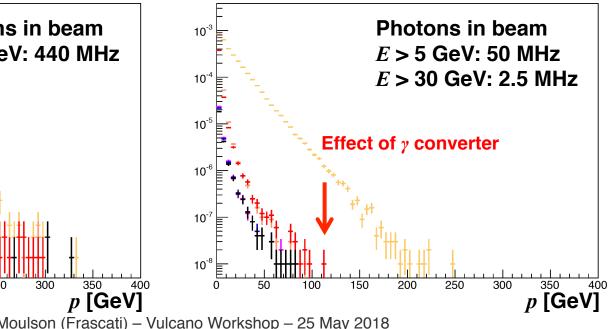
Neutral beamline layout



- Compact primary beam sweeping
- Photon absorber in dump collimator
- 4 collimation stages to minimize neutron halo, including beam scattered from absorber
- Active final collimator in LYSO

Neutral beam simulation




 $K_I \rightarrow \pi^0 vv$: **Results and prospects –** M. Moulson (Frascati) – Vulcano Workshop – 25 May 2018

FLUKA simulation of beamline

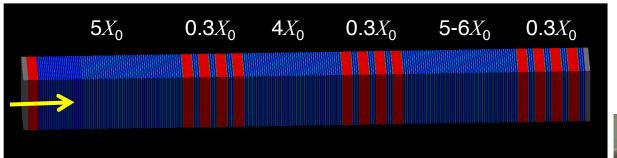
32-mm tungsten coverter ($9X_0$)

Detail of target and dump collimator:

Shashlyk calorimeter with spy tiles

Main electromagnetic calorimeter (MEC):

Fine-sampling shashlyk based on PANDA forward EM calorimeter produced at Protvino

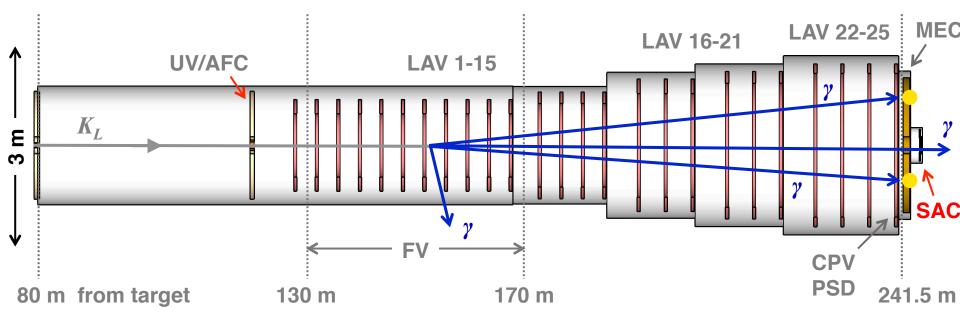

0.275 mm Pb + 1.5 mm scintillator

PANDA/KOPIO prototypes:

- $\sigma_E / \sqrt{E} \sim 3\% / \sqrt{E}$ (GeV)
- σ_t ~ 72 ps /√E (GeV)
- $\sigma_x \sim 13 \text{ mm} / \sqrt{E} \text{ (GeV)}$

New for KLEVER: Longitudinal shower information from spy tiles

- PID information: identification of μ , π , *n* interactions
- Shower depth information: improved time resolution for EM showers



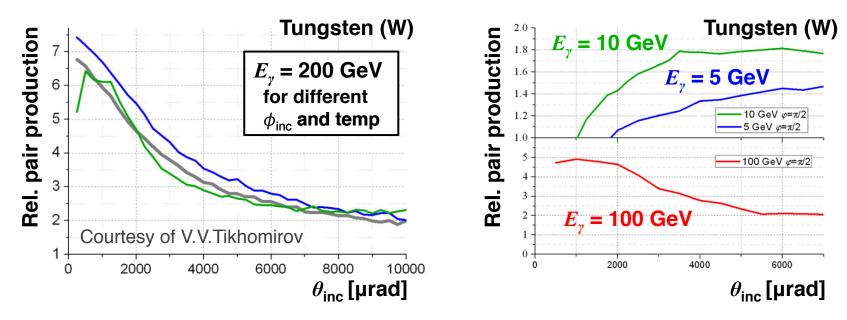
1st prototype assembled and tested at Protvino OKA beamline, April 2018

Small-angle photon veto

Small-angle photon veto systems (IRC, SAC)

- Reject high-energy γ s from $K_L \rightarrow \pi^0 \pi^0$ escaping through beam hole
- Must be insensitive as possible to 430 MHz of beam neutrons

Beam comp.	Rate (MHz)	Req. 1 – ε
γ, <i>E</i> > 5 GeV	50	10 ⁻²
γ, <i>E</i> > 30 GeV	2.5	10 ⁻⁴
n	430	_


Baseline solution:

• Tungsten/silicon-pad sampling calorimeter with crystal metal absorber

Efficient y conversion with crystals

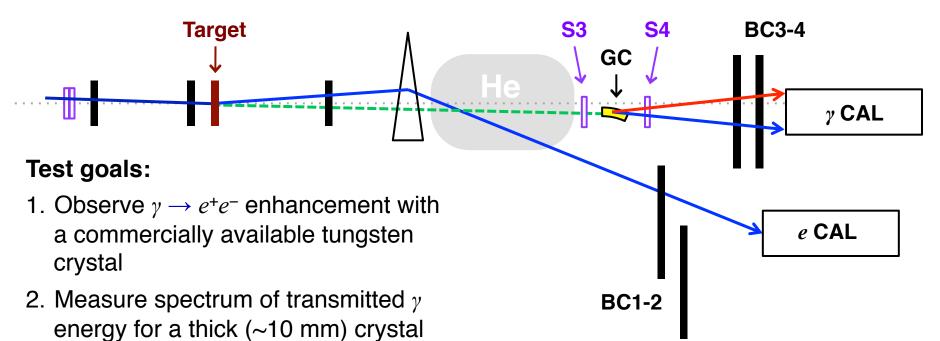
Coherent effects in crystals enhance pair-conversion probability

Use coherent effects to obtain a converter with large effective λ_{int}/X_0 :

1. Beam photon converter in dump collimator

Effective at converting beam γ s while relatively transparent to K_L

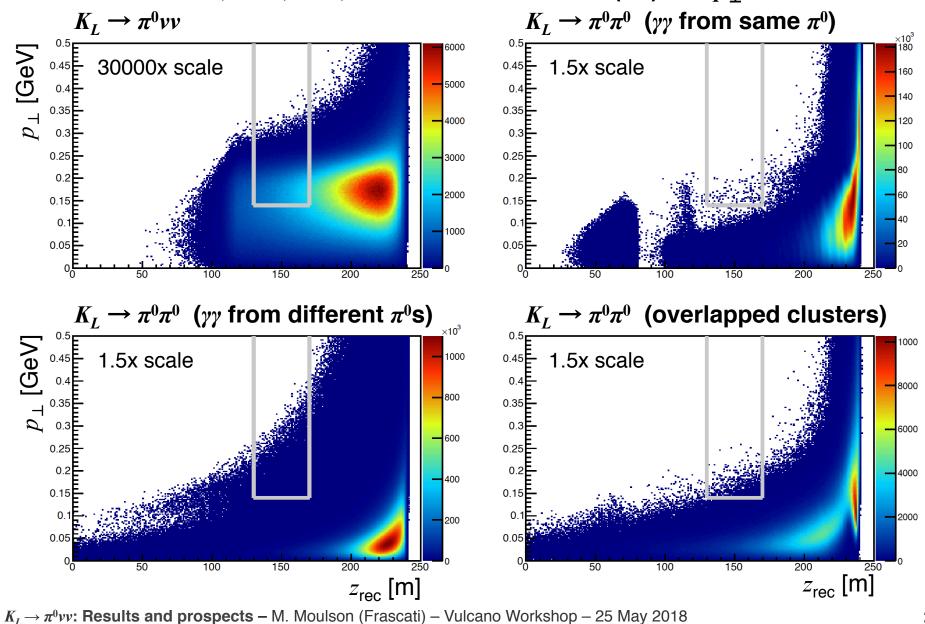
2. Absorber material for small-angle calorimeter (SAC)


Must be insensitive as possible to high flux of beam neutrons while efficiently vetoing high-energy γ s from K_L decays

Beam test of $\gamma \rightarrow e^+e^-$ in crystals

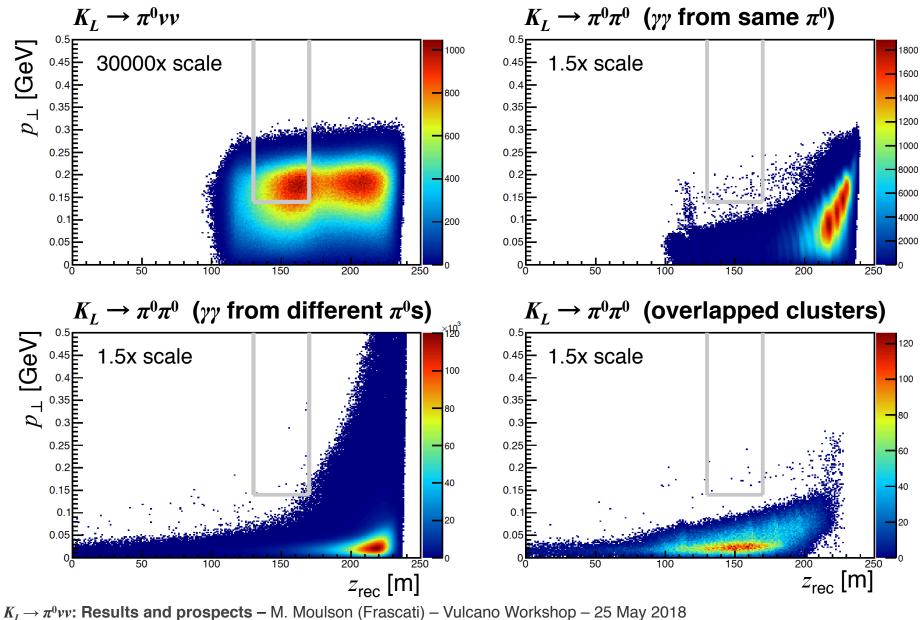
AXIAL group is collaborating with KLEVER on test beam measurement of pair-production enhancement in crystals

Tagged photon test beam setup:


- 3. Measure pair conversion vs. E_{γ} , θ_{inc} for 5 < E_{γ} < 150 GeV
- 4. Obtain information to assist MC development for beam photon converter and SAC

- Nearly all detectors and DAQ system available for use from AXIAL
- 1 week of beam H2 beam time in August 2018

Basic signal selection



No hits in UV, AFC, LAV, SAC + fiducial volume (FV) and p_{\perp} cuts

Additional background rejection

Status and timeline

Project timeline – target dates:

- 2017-2018 Project consolidation and proposal
 Beam test of crystal pair enhancement
 Consolidate design
- 2019-2021Detector R&D
- 2021-2025Detector construction• Possible K12 beam test if compatible with NA62
- 2024-2026Installation during LS3

2026- Data taking beginning Run 4

- KLEVER is actively seeking new collaborators!
- KLEVER is represented in the CERN Physics Beyond Colliders study
- An Expression of Interest to the CERN SPSC is in preparation and will also be submitted as input to the European Strategy for Particle Physics

$K_L \rightarrow \pi^0 v \bar{v}$: Summary and outlook

Flavor will play an important role in identifying new physics, even if new physics is found at the LHC

- $K \rightarrow \pi v v$ is a uniquely sensitive indirect probe for high mass scales
- Need precision measurements of both K^+ and K_L decays

NA62 will improve on current knowledge of BR($K^+ \rightarrow \pi^+ vv$) in short term, ultimately reaching ~100 event sensitivity

KOTO will reach SM sensitivity to BR($K_L \rightarrow \pi^0 vv$) by 2021

Preliminary design studies indicate that an experiment to measure BR($K_L \rightarrow \pi^0 vv$) can be performed at the SPS in Run 4 (2026-2029)

- Many issues still to be addressed!
- Expected sensitivity: ~ 60 SM events with S/B ~ 1
- KLEVER is preparing Expression of Interest to CERN SPSC and will provide input to European Strategy for Particle Physics

Additional information

Frontier Objects in Astrophysics and Particle Physics Vulcano, 25 May 2018

Matthew Moulson INFN Frascati

moulson@Inf.infn.it

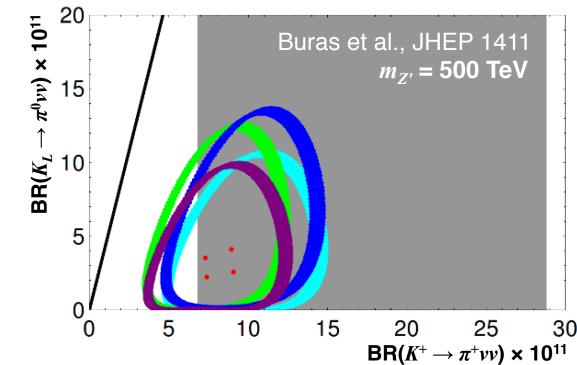
Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati

$K \rightarrow \pi v \bar{v}$ and new physics

General agreement of flavor observables with SM \rightarrow invocation of MFV

Long before recent flavor results from LHC

But NP may simply occur at a higher mass scale


Null results from direct searches at LHC so far

Indirect probes to explore high mass scales become very interesting!

 $K \rightarrow \pi v \bar{v}$ is uniquely sensitive to high mass scales

Tree-level flavor changing *Z*' LH+RH couplings

- Some fine-tuning around constraint from ε_K
- $K \rightarrow \pi v v$ sensitive to mass scales up to 2000 TeV
 - Up to tens of TeV even if LH couplings only
- Order of magnitude higher than for *B* decays

$K \rightarrow \pi v \bar{v}$ and other kaon observables

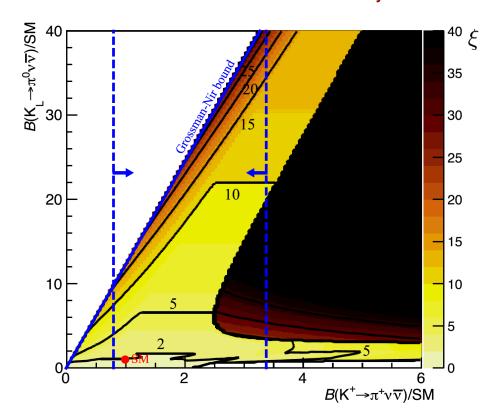
What about constraints from Re ε'/ε , ε_K , Δm_K , $K_L \rightarrow \mu \mu$?

Particular interest in constraints from Re ε'/ε

- 2015 result demonstrates Re ε'/ε is accessible to lattice QCD
- Lattice QCD value 2.1σ lower than experimental value

Endo et al. PLB771 (2017)

General Z scenario with modified couplings, $\Lambda = 1$ TeV


 Because of interference between SM and NP amplitudes, if all constraints satisfied including "discrepancy" in Re ε'/ε:

 $BR(K \rightarrow \pi v v) \sim 0.5 SM BR$

- Particularly in simplified scenarios: LH, RH, LRS
- With moderate tuning (cancellation of interference terms to 10%), large values for BR($K \rightarrow \pi vv$) are possible

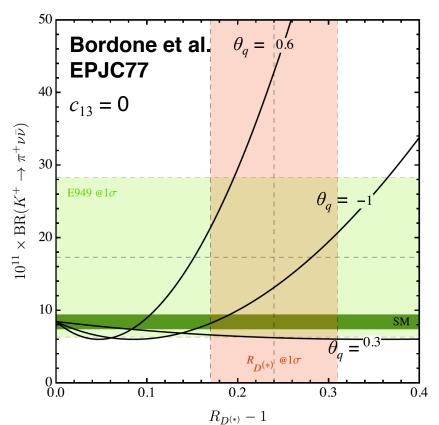
PDG average: NA48 + KTeV Re ε'/ε = (16.6 ± 2.3) × 10⁻⁴

RBC/UKQCD PRL115 (2015) Re $\varepsilon'/\varepsilon = 1.38(5.15_{st})(4.59_{sv}) \times 10^{-4}$

 $K_L \rightarrow \pi^0 vv$: **Results and prospects –** M. Moulson (Frascati) – Vulcano Workshop – 25 May 2018

$K \rightarrow \pi v \bar{v}$ and other flavor observables

New ideas relating $K \rightarrow \pi v v$ to *B*-sector LFU anomalies:


 $R_{K}, P_{5}': \mu/e \text{ LFU in } B \to K\ell\ell, B \to K^{*}\ell\ell$ $R_{D(*)}: \tau/(\mu, e) \text{ LFU in } B \to D^{(*)}\ell\nu$

Coherent explanation from NP coupled predominantly to 3rd generation LH quarks and leptons, e.g., mediated by vector leptoquark

- Di Luzio et al. PRD 96 (2017)
- Buttazzo et al. JHEP 1711

EFT studies suggest large effect for $K \rightarrow \pi v v$

• Bordone et al. EPJC77 (2017)

$$\mathcal{B}(B \to D^{(*)}\tau\bar{\nu}) = \mathcal{B}(B \to D^{(*)}\tau\bar{\nu})_{\mathrm{SM}} \left| 1 + R_0 \left(1 - \theta_q e^{-i\phi_q} \right) \right|^2$$

$$\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) = 2\mathcal{B}(K_L \to \pi^0 \nu_e \bar{\nu}_e)_{\rm SM} + \mathcal{B}(K_L \to \pi^0 \nu_\tau \bar{\nu}_\tau)_{\rm SM} \left| 1 - \frac{R_0 \,\theta_q^2 (1 - c_{13})}{(\alpha/\pi)(X_{\rm t}/s_{\rm w}^2)} \right|^2$$

 $K_L \rightarrow \pi^0 vv$: **Results and prospects –** M. Moulson (Frascati) – Vulcano Workshop – 25 May 2018

 $R_0 = \frac{1}{\Lambda^2} \frac{1}{\sqrt{2}G_E}$

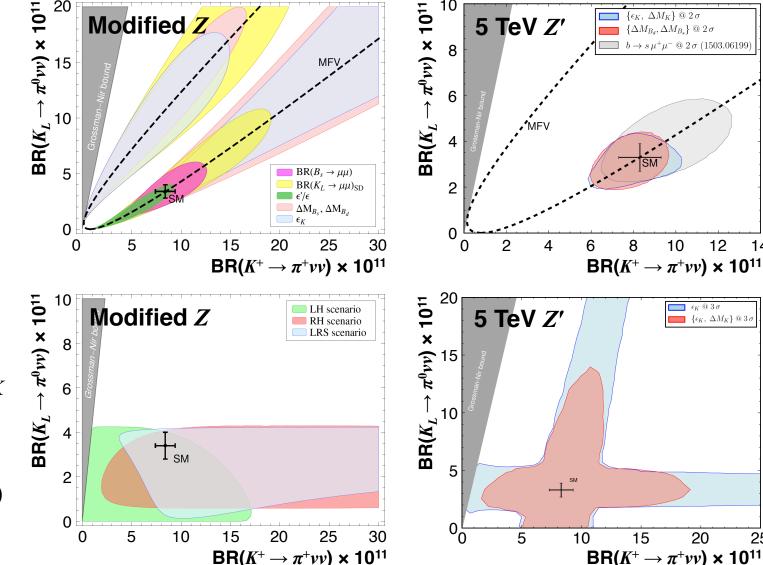
$K \rightarrow \pi v \bar{v}$ and other flavor observables

20

Buras, Buttazzo, Knegjens, JHEP 1511

 ΔM_K @ 2 σ

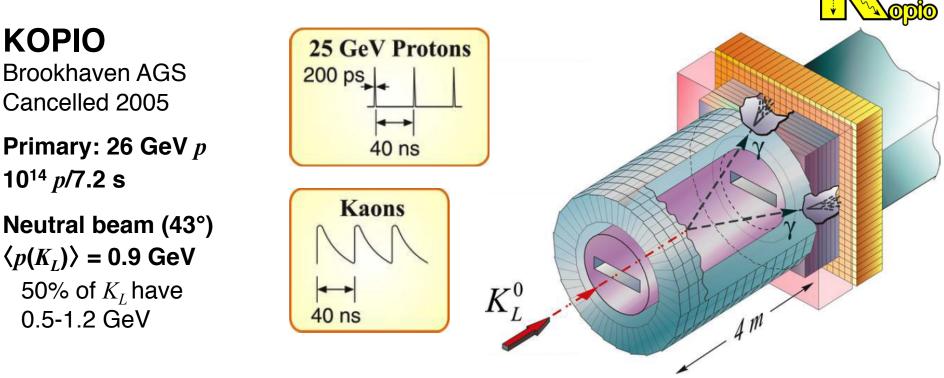
10


CMFV hypothesis:

Constraints from *B* and *K* observables

Constraints from *K* observables:

- $\varepsilon_K, \Delta M_K$
- $\varepsilon'/\varepsilon, K \rightarrow \mu\mu$ (for modfied *Z*)



 $K_{I} \rightarrow \pi^{0} vv$: **Results and prospects –** M. Moulson (Frascati) – Vulcano Workshop – 25 May 2018

25

14

Extra constraints for $K_L \rightarrow \pi^0 v \bar{v}$

Microbunched beam from AGS:

200 ps every 40 ns, 10⁻³ extinction

Flat beam to increase K_L flux

Solid angle 360 μ sr = 1 m wide!

Preradiator in front of calorimeter

Reconstruct angle of incidence for γ s

Sensitivity: 180 SM evts in ~4 yr

Advantages:

- $p(K_L)$ from time of flight
- Vertex position from preradiator
- Redundant constraints

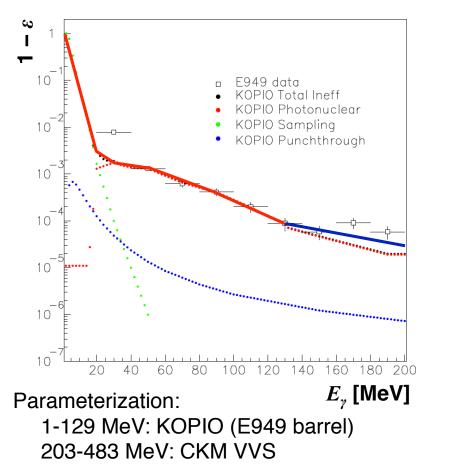
Disadvantages:

- Difficult to veto low-energy γs
- Much lower K_L flux at high angle

High-intensity neutral beam issues

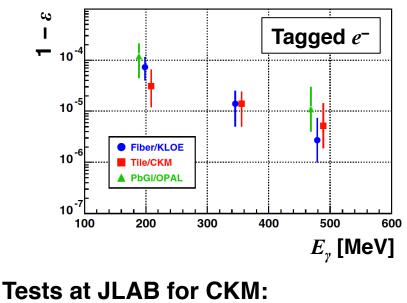
 $10^{19} \text{ pot/yr} \times 5 \text{ years} \rightarrow 2 \times 10^{13} \text{ ppp/16.8s} = 6 \times \text{ increase relative to NA62}$ Feasibility/cost study a primary goal of our involvement in Conventional Beam WG

Preliminary analysis of critical issues by Secondary Beams & Areas group


Issue	Approach
Extraction losses	Good results on ZS losses and spill quality from SPS Losses & Activation WG (SLAWG) Slow extraction workshop, 9-11 November: <u>https://indico.cern.ch/event/639766/</u>
Beam loss on T4	Vertical by-pass to increase transmission to T10
Equipment protection	Possibly use SIS interlock to stop extraction during P0Survey reaction time
Ventilation in ECN3	Need to understand better current safety margin May need comprehensive ventilation system upgrade
ECN3 beam dump	Significantly improved for NA62 Need to understand better current safety margin
Background fluxes	Detailed simulations getting started

Large-angle photon vetoes

26 new LAV detectors providing hermetic coverage out to 100 mrad Need good detection efficiency at low energy $(1 - \varepsilon \sim 0.5\% \text{ at } 20 \text{ MeV})$


Baseline technology: CKM VVS Scintillating tile with WLS readout

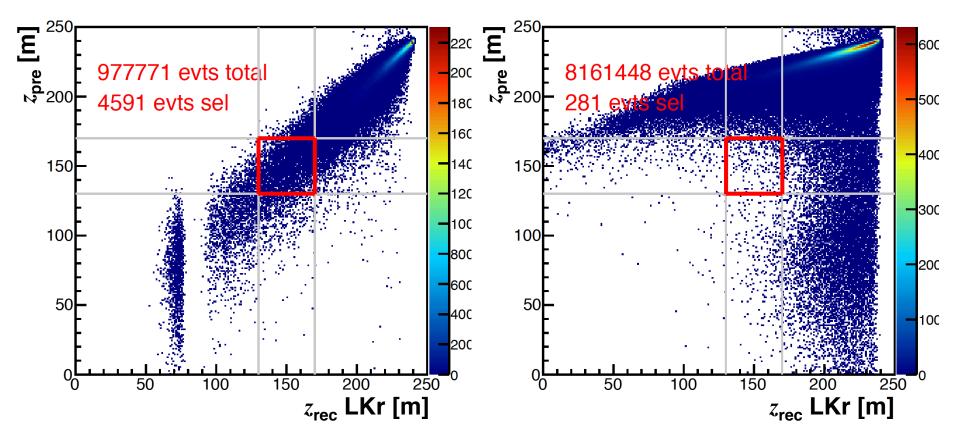
Good efficiency assumptions based on E949 and CKM VVS experience

E949 barrel veto efficiencies Same construction as CKM

Tests for NA62 at Frascati BTF

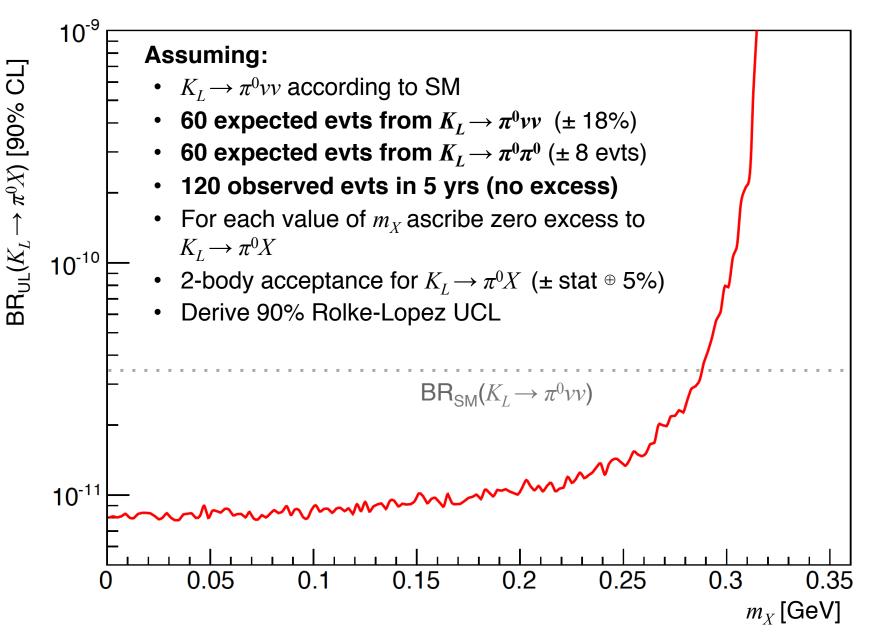
• $1 - \varepsilon \sim 3 \times 10^{-6}$ at 1200 MeV

Preshower background rejection

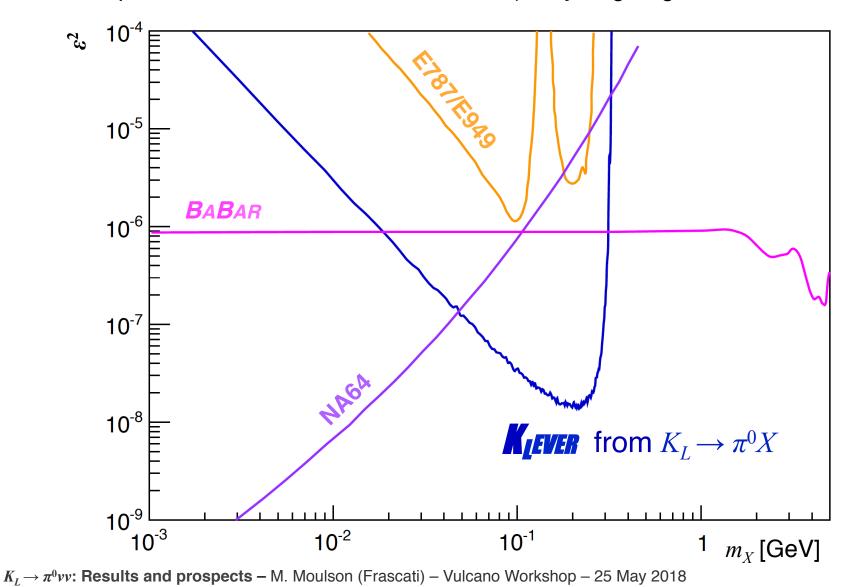

Preshower vertex z_{pre} vs. LKr vertex z_{rec} z_{rec} reconstructed by imposing $M(\gamma\gamma) = m_{\pi 0}$

```
Even pairs (2 \gamma from same \pi^0)
1 \gamma converts in preshower
```

• $K_L \rightarrow \pi^0 \pi^0$, 1 year equivalent


• No cuts on FV, p_{\perp} , r_{\min}

Odd pairs (2 γ s from different π^0) 1 γ converts in preshower


Limits on $K_L \rightarrow \pi^0 X$ from $K_L \rightarrow \pi^0 v v$

Limits on dark photon from $K_L \rightarrow \pi^0 v v$

Interpret *X* as dark photon and obtain limits in ε^2 vs. m_X plane As per Davoudiasl, Lee, Marciano 2014 (analysis giving E787/E949 limits)

