Chiral three-nuclear forces up to $\mathrm{N}^{4} \mathrm{LO}$

Hermann Krebs
Ruhr-Universität-Bochum

The 8th International Workshop on Chiral Dynamics Pisa, Italy

July 1, 2015

With V. Bernard, E. Epelbaum, A. Gasparyan, U.-G. Meißner

LENPIC
 Low Energy Nuclear Physics International Collaboration

TECHNISCHE
UNIVERSITAT
Binder
UNIVERSTAT
DARMSTADT
Langhammer, Roth

IOWA STATE Maris, Potter, Vary
UNIVERSITY

Bernard

JAGiellonian UNIVERSITY IN KRAKOW

Golak, Skibinski, Topolniki,Witala

Meißner
universitätbonn

Kamada
Kyutech

Outline

- Nuclear forces in chiral EFT
- 3NF's upto N4LO
- PWD of the three-nucleon forces
- Summary \& Outlook

ChPT pros and cons

ChPT as an effective field theory of QCD
\checkmark is the most general field theory with pions, nucleons (deltas) as dofs in line with the symmetries of QCD
\checkmark is systematically improvable
\checkmark gives a unified description of $\pi \pi, \pi \mathrm{N}, \mathrm{NN}$, (axial) vector currents etc.
\checkmark naturally explains the hierarchy
$V_{2 N} \gg V_{3 N} \gg V_{4 N}$
\checkmark predicts the long range behavior of nuclear forces
\checkmark allows doing precision physics with/from light nuclei
number of free parameters (LEC) increases with increasing order in ChPT
does not provide an explanation on the size of a particular LEC
is only applicable in the low energy region
. convergence radius of ChPT is a priori unknown

ChPT nuclear forces

	V $_{\text {NN }}$	V $_{3 N}$	V $_{4 N}$
Worked out up to the order	N^{4} LO Evgeny's talk	N3LO N4LO in progress	N^{3} LO
Regularization used	Dim. Reg In combination with semi-local regularization in Schrodinger eq.	Dim. Reg.	-

Partial N5LO calculation \longrightarrow Ruprecht's talk

Novelties in NN sector (beside the construction of N4LO NN)

Local regularization in coordinate space: $V_{\text {long-range }}(\vec{r}) \rightarrow V_{\text {long-range }}(\vec{r})\left[1-\exp \left(-\frac{r^{2}}{R^{2}}\right)\right]^{n}$
\checkmark By construction long - range physics is unaffected by this regulator
\checkmark No additional SFR is needed

Theoretical uncertainty estimation due to chiral expansion for every fixed cutoff R

$$
\begin{aligned}
& \mathrm{np} \text { total cross section } \\
& \text { at several cutoffs } \\
& R_{i}=(0.7+i \times 0.1) \mathrm{fm}
\end{aligned}
$$

Epelbaum, HK, Meißner EPJA 51 (2015) 5

Phase shifts and mixing angles

Epelbaum, HK, Meißner, arXiv: 1412.4623

Good convergence of chiral expansionError bands are consistent with each other \longrightarrow strong support of chiral uncertainty estimationExcellent agreement with NPWA data

Role of the 3NFs

LENPIC collaboration: Binder et al. arXiv:1505.07218

Total cross section for Nd scattering
chiral predictions without 3 NF at $\mathrm{R}=0.9 \mathrm{fm}$

The discrepancy at 10 MeV is much lower than at other energies

Significant discrepancy between experiment and theory
Cross section at low energy is governed by S-wave spin-doublet and spin-quartet Nd scattering lengths:
${ }^{4} a \gg{ }^{2} a$ (one order of magnitude)
${ }^{4} \mathrm{a}$ is much less sensitive to 3NF (Pauli principle)

3NF up to $\mathrm{N}^{4} \mathrm{LO}$

Most general structure of a local 3NF

Up to $\mathrm{N}^{4} \mathrm{LO}$, the computed contributions are local \longrightarrow it is natural to switch to r-space.
A meaningful comparison requires a complete set of independent operators

$$
\begin{aligned}
\tilde{\mathcal{G}}_{1} & =1 \\
\tilde{\mathcal{G}}_{2} & =\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{3} \\
\tilde{\mathcal{G}}_{3} & =\vec{\sigma}_{1} \cdot \vec{\sigma}_{3} \\
\tilde{\mathcal{G}}_{4} & =\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{3} \vec{\sigma}_{1} \cdot \vec{\sigma}_{3} \\
\tilde{\mathcal{G}}_{5} & =\boldsymbol{\tau}_{2} \cdot \boldsymbol{\tau}_{3} \vec{\sigma}_{1} \cdot \vec{\sigma}_{2} \\
\tilde{\mathcal{G}}_{6} & =\boldsymbol{\tau}_{1} \cdot\left(\boldsymbol{\tau}_{2} \times \boldsymbol{\tau}_{3}\right) \vec{\sigma}_{1} \cdot\left(\vec{\sigma}_{2} \times \vec{\sigma}_{3}\right) \\
\tilde{\mathcal{G}}_{7} & =\boldsymbol{\tau}_{1} \cdot\left(\boldsymbol{\tau}_{2} \times \boldsymbol{\tau}_{3}\right) \vec{\sigma}_{2} \cdot\left(\hat{r}_{12} \times \hat{r}_{23}\right) \\
\tilde{\mathcal{G}}_{8} & =\hat{r}_{23} \cdot \vec{\sigma}_{1} \hat{r}_{23} \cdot \vec{\sigma}_{3} \\
\tilde{\mathcal{G}}_{9} & =\hat{r}_{23} \cdot \vec{\sigma}_{3} \hat{r}_{12} \cdot \vec{\sigma}_{1} \\
\tilde{\mathcal{G}}_{10} & =\hat{r}_{23} \cdot \vec{\sigma}_{1} \hat{r}_{12} \cdot \vec{\sigma}_{3} \\
\tilde{\mathcal{G}}_{11} & =\boldsymbol{\tau}_{2} \cdot \boldsymbol{\tau}_{3} \hat{r}_{23} \cdot \vec{\sigma}_{1} \hat{r}_{23} \cdot \vec{\sigma}_{2} \\
\tilde{\mathcal{G}}_{12} & =\boldsymbol{\tau}_{2} \cdot \boldsymbol{\tau}_{3} \hat{r}_{23} \cdot \vec{\sigma}_{1} \hat{r}_{12} \cdot \vec{\sigma}_{2} \\
\tilde{\mathcal{G}}_{13} & =\boldsymbol{\tau}_{2} \cdot \boldsymbol{\tau}_{3} \hat{r}_{12} \cdot \vec{\sigma}_{1} \hat{r}_{23} \cdot \vec{\sigma}_{2} \\
\tilde{\mathcal{G}}_{14} & =\boldsymbol{\tau}_{2} \cdot \boldsymbol{\tau}_{3} \hat{r}_{12} \cdot \vec{\sigma}_{1} \hat{r}_{12} \cdot \vec{\sigma}_{2} \\
\tilde{\mathcal{G}}_{15} & =\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{3} \hat{r}_{13} \cdot \vec{\sigma}_{1} \hat{r}_{13} \cdot \vec{\sigma}_{3} \\
\tilde{\mathcal{G}}_{16} & =\boldsymbol{\tau}_{2} \cdot \boldsymbol{\tau}_{3} \hat{r}_{12} \cdot \vec{\sigma}_{2} \hat{r}_{12} \cdot \vec{\sigma}_{3} \\
\tilde{\mathcal{G}}_{17} & =\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{3} \hat{r}_{23} \cdot \vec{\sigma}_{1} \hat{r}_{12} \cdot \vec{\sigma}_{3} \\
\tilde{\mathcal{G}}_{18} & =\boldsymbol{\tau}_{1} \cdot\left(\boldsymbol{\tau}_{2} \times \boldsymbol{\tau}_{3}\right) \vec{\sigma}_{1} \cdot \vec{\sigma}_{3} \vec{\sigma}_{2} \cdot\left(\hat{r}_{12} \times \hat{r}_{23}\right) \\
\tilde{\mathcal{G}}_{19} & =\boldsymbol{\tau}_{1} \cdot\left(\boldsymbol{\tau}_{2} \times \boldsymbol{\tau}_{3}\right) \vec{\sigma}_{3} \cdot \hat{r}_{23} \hat{r}_{23} \cdot\left(\vec{\sigma}_{1} \times \vec{\sigma}_{2}\right) \\
\tilde{\mathcal{G}}_{20} & =\boldsymbol{\tau}_{1} \cdot\left(\boldsymbol{\tau}_{2} \times \boldsymbol{\tau}_{3}\right) \vec{\sigma}_{1} \cdot \hat{r}_{23} \vec{\sigma}_{3} \cdot \hat{r}_{12} \vec{\sigma}_{2} \cdot\left(\hat{r}_{12} \times \hat{r}_{23}\right)
\end{aligned}
$$

Building blocks:

$$
\boldsymbol{\tau}_{1}, \boldsymbol{\tau}_{2}, \boldsymbol{\tau}_{3}, \vec{\sigma}_{1}, \vec{\sigma}_{2}, \vec{\sigma}_{3}, \vec{r}_{12}, \vec{r}_{23}
$$

Constraints:

- Locality
- Isospin symmetry
- Parity and time-reversal invariance

$$
\longrightarrow V_{3 N}=\sum_{i=1}^{20} \tilde{\mathcal{G}}_{i} F_{i}\left(r_{12}, r_{23}, r_{31}\right)+5 \text { perm } .
$$

Epelbaum, Gasparyan, HK, PRC87 (2013) 054007
Schat, Phillips, PRC88 (2013) 034002
Epelbaum, Gasparyan, HK, Schat, EPJA51 (2015) 3

Long-range 3 NF up to $\mathrm{N}^{4} \mathrm{LO}$

Representative dominant contributions to profile functions
Epelbaum, Gasparyan, HK, Schat, EPJA51 (2015) 3

- All 22 profile functions start to contribute at $\mathrm{N}^{4} \mathrm{LO}$
- Large $\mathrm{N}^{4} \mathrm{LO}$ contributions due to sizable ci's (hidden Δ dofs)
- No statement about convergence possible
\longrightarrow explicit Δ treatment needed to clarify convergence issue

Quantitative statements are only possible once observables are calculated

Partial wave decomposition

Golak et al. Eur. Phys. J. A 43 (2010) 241

- Faddeev equation is solved in the partial wave basis

$$
|p, q, \alpha\rangle \equiv\left|p q(l s) j\left(\lambda \frac{1}{2}\right) I(j I) J M_{J}\right\rangle\left|\left(t \frac{1}{2}\right) T M_{T}\right\rangle
$$Too many terms for doing PWD by hand

$\underbrace{\left\langle p^{\prime} q^{\prime} \alpha^{\prime}\right| V|p q \alpha\rangle}_{\text {matrix } \sim 10^{5} \times 10^{5} \begin{array}{c}\text { can be reduced } \\ \text { to } 5 \text { dim. integral }\end{array}}=\int \underbrace{d \hat{p}^{\prime} d \hat{q}^{\prime} d \hat{p} d \hat{q}} \sum_{m_{l}, \ldots}($ CG coeffs. $)\left(Y_{l, m_{l}}(\hat{p}) Y_{l^{\prime}, m_{l}^{\prime}}\left(\hat{p}^{\prime}\right) \ldots\right) \underbrace{\left\langle m_{s_{1}}^{\prime} m_{s_{2}}^{\prime} m_{s_{3}}^{\prime}\right| V \mid m_{s_{1}} m_{s_{2}} m_{s_{3}}}_{\text {depends on spin } \& \text { isospin }}\}$

- Numerically expensive due to many channels and 5-dim. integration
- PWD matrix-elements can be used to produce matrix-elements in harmonic oscillator basis

Straightforward implementation of high order 3nf's in many-body calc. within No-Core Shell Model

PWD for local forces

$$
\begin{aligned}
& \left\langle m_{s}^{\prime}\right| \vec{\sigma} \cdot \vec{p}\left|m_{s}\right\rangle=\sum_{\mu=-1}^{1} p Y_{1 \mu}^{*}(\hat{p}) \sqrt{\sqrt{\frac{4 \pi}{3}}}\left\langle m_{s}^{\prime}\right| \vec{\sigma} \cdot \vec{e}_{\mu}\left|m_{s}\right\rangle \\
& \left\langle m_{s_{1}}^{\prime} m_{s_{2}}^{\prime} m_{s_{3}}^{\prime}\right| V\left|m_{s_{1}} m_{s_{2}} m_{s_{3}}\right\rangle=\sum_{\mu^{\prime} s}\left(m_{s_{1}}^{\prime} m_{s_{2}}^{\prime} m_{s_{3}}^{\prime} \mid \text { Spin matrices \& } \overrightarrow{\mathrm{e}}_{\mu}{ }^{\prime} \mathrm{s}\left|m_{s_{1}} m_{s_{2}} m_{s_{3}}\right\rangle\left(Y_{1 \mu}^{\prime} s\right)\right. \\
& \times V\left(\left(\vec{p}^{\prime}-\vec{p}\right)^{2},\left(\vec{q}^{\prime}-\vec{q}\right)^{2},\left(\vec{p}^{\prime}-\vec{p}\right) \cdot\left(\vec{q}^{\prime}-\vec{q}\right)\right) \\
& \left\langle p^{\prime} q^{\prime} \alpha^{\prime}\right| V|p q \alpha\rangle \stackrel{ }{\substack{\text { can be reduced } \\
\text { to } 3 \text { dim. integral }}}=\sum_{m_{l} \ldots}(\text { CG coeffs. }) \int \overparen{d \hat{p}^{\prime} d \hat{q}^{\prime} d \hat{p} d \hat{q} Y_{l_{1}^{*} m_{1}^{\prime}}^{*}\left(\hat{p}^{\prime}\right) Y_{l_{2}^{*} m_{2}^{\prime}}^{*}\left(\hat{q}^{\prime}\right) Y_{l_{1} m_{1}}^{*}(\hat{p}) Y_{l_{2} m_{2}}^{*}(\hat{q}),} \\
& \times V\left(\left(\vec{p}^{\prime}-\vec{p}\right)^{2},\left(\vec{q}^{\prime}-\vec{q}\right)^{2},\left(\vec{p}^{\prime}-\vec{p}\right) \cdot\left(\vec{q}^{\prime}-\vec{q}\right)\right) \rightarrow \text { Speed up factors }>1000
\end{aligned}
$$

- Unregularized 3NF matrix elements can be used to generate locally regularized 3NFs
$\left\langle p^{\prime} q^{\prime} \alpha^{\prime}\right| V|p q \alpha\rangle \rightarrow \sum_{n}\left\langle p^{\prime} q^{\prime} \alpha^{\prime}\right| V|n\rangle\langle n| R|p q \alpha\rangle$ with $\left\langle p^{\prime} q^{\prime} \alpha^{\prime}\right| R|p q \alpha\rangle$ matrix element of local regulator

Summary

- Chiral 3NF's are studied up to N3LO / partly up to N4LO
- Optimized version of PWD for local 3NF‘s
- Stored matrix elements can be used within local regularization

Outlook

- N^{4} LO Δ-less/N3LO- Δ calc. of shorter range part of 3NF
\longrightarrow Generation of matrix-elements for 3NF's up to N ${ }^{4}$ LO Δ-less/N3LO- Δ Due to optimized PWD should not cost much

