

\overline{eta} -decay feeding from 69,71 Co determined from total absorption spectroscopy measurements

S. Lyons^{*a,c*}, A. Spyrou^{*a,b,c*}, S.N. Liddick^{*a,d,c*}, B.P. Crider^{*a*}, A.C. Dombos^{*a,b,c*}, D.L. Bleuel^{*e*}, B.A. Brown^{*a,b*}, A. Couture^{*f*}, L. Crespo Campo^{*g*}, M. Guttormsen^{*g*}, A.C. Larsen^{*g*}, R. Lewis^{*a,d*}, F. Naqvi^{*a*}, P. Möller^{*f*}, S. Mosby^{*f*}, M.R. Mumpower^{*f,c*}, A. Palmisano^{*a,b,c*}, G. Perdikakis^{*i,a,c*}, C.J. Prokop^{*a,d*}, T. Renstrøm^{*g*}, S. Siem^{*g*}, M.K. Smith^{*a,c*}, R. Surman^{*h*}, S.J. Quinn^{*a,b,c*}, S. Valenta^{*f*}

^{*a}</sup>National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA*</sup>

^bDepartment of Physics and Astronomy, Michigan State University, East Lansing, Michigan, 48824, USA

^{*c}</sup><i>The Joint Institute for Nuclear Astrophysics–Center for the Evolution of the Elements, Michigan State University, East Lansing, Michigan 48824, USA*</sup>

^{*d}</sup>Department of Chemistry, Michigan State University, East Lansing, Michigan, 48824, USA*</sup>

^eLawrance Livermore National Laboratory, 7000 East Avenue, Livermore, California, 94550, USA

^fLos Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA

^gDepartment of Physics, University of Oslo, NO-0316, Oslo, Norway

^hDepartment of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA

^{*i*}Department of Physics, Central Michigan University, Mt. Pleasant, Michigan, 48859, USA

^{*j*} Faculty of Mathematics and Physics, Charles University Prague, V Holešovičkách 2

The *r* process is known to produce roughly half of the abundance of the isotopes of heavy elements. Models of the *r* process depend upon theoretical calculations of various nuclear properties such as those from QRPA and Hauser-Feshbach. Sensitivity studies have shown that the final abundance distributions of *r*-process nuclei are greatly impacted by uncertainties in nuclear masses, neutron-capture rates, as well as β -decay properties. More specifically, β -decay half-lives and β -delayed neutron branching ratios depend on an accurate knowledge of the β -decay strength function. For this reason, β -decay intensities for ^{69,71}Co were determined using the technique of total absorption spectroscopy at the National Superconducting Cyclotron Laboratory at Michigan State University. This technique allows us to overcome the so-called "pandemonium effect," which can cause β -feeding intensities to high-lying excitation energies to be missed in traditional β -decay studies. The high Q-values of both ⁶⁹Co and ⁷¹Co allow for the study of β -decay properties over a broad energy range. The resultant β -decay intensities and deduced Gamow-Teller strength distributions will be presented and compared to theoretical calculations, including QRPA.