

Using Simulated Data Streams to Develop Real-time Analysis Pipelines

John Zweizig
California Institute of Technology
LIGO Lab

For the LIGO Scientific Collaboration and Virgo Collaboration

Motivation

- Our overriding goal is early realization of full scientific potential of advanced detectors
- This will require:
 - a sensitive instrument
 - Rapid detector characterization
 - well understood analysis procedures
- Near real-time coherent data analysis will be necessary to exploit fully the sensitivity of the advanced detectors.
 - Immediately identify GW candidates
 - Focussed feedback to commissioners
 - Rapid EM follow-up

Ideal Real-Time Analysis

- h(t) data available from all detectors (LHO, LLO, VIRGO)
- Route data to large analysis processor cluster
- Low latency O(0.5 10s)
- Perform coherent analysis

Real-Time Analysis Environment

- Interface to low latency data
- Use real-time data quality info
- Keep up with data stream
- Imperfections in data delivery
 - Dropped frames
 - Invalid data (e.g. NaNs)
 - Unanticipated state transitions (lock-loss)
 - Arrival time slewing
- Problems compounded when performing coherent multi-site analysis.

Simulated Data Streams

- If the detector isn't available to provide data Simulate!
- Noise spectrum generated according to design aLIGO (ZDHP) and aVirgo spectra.
- Inject coherent signal (modified for arrival time, antenna pattern) into each data stream.
- Add generated status channel (lock, calibrated, science bits)
- Package as 4s frames for low-latency delivery.

Simulation Plan

- Set up data streams/delivery to be as similar as possible to science running
 - No predetermined science times
 - No synchronization of lock time or science mode between instruments
 - No synchronization of arrival times
 - Realistic data errors / drop-outs.
- Need to hand analysis pipelines simulated data NOW so that they can
 - Learn to interface to low-latency data
 - Implement error recovery
 - Check configuration/timing
 - Verify pipeline efficiency
- Transfer to central analysis clusters
 - Caltech Ligo condor-cluster
 - Cascina analysis node.
- Multiple parallel analysis and DQ pipelines (check interoperability)
- Watch Murphy's law in action!

Low Latency Data Transfer

- Build low-latency frames at each observatory.
 - Simulated h(t) + injections, data quality channel
 - Archive frames at observatory, LDR to caltech
- Point-to-point frame transfer to CIT head node (Idas-grid)
 - Simple TCP link from LHO, LLO observatories.
 - FdIO from Virgo.
- UDP multicast from head node to all CIT cluster nodes.
 - Data access Via gds shared memory or /dev/shm
- FdIO service to send LLO, LHO data (+echoed Virgo data) to Virgo.
- Typical latency to CIT cluster nodes (from 4s frame start time):
 - <5s for LHO, LLO data</p>
 - <9s for Virgo Data</p>

LIGO Software Engineering Run (ER) Program

- Active 1-month runs twice per year (February, July).
 - Planned milestones (functional goals)
 - Participation of both LSC and VIRGO scientists
 - ~40% of CIT cluster nodes (> half of processor power)
- Low latency data
 - Data steams monitored and actively maintained
 - Both published and blinded injections
- Full implementation of analysis pipelines
 - CBC gStreamer pipeline
 - Coherent waveburst (cWB) pipeline
 - MTBF
 - Others to come?
- Event data services
 - Segment database
 - GW Event candidate database

ER1 (Jan 18 - Feb 15, 2012)

Goals

- Deploy low-latency data transfer and access tools
- Develop and test signal generation infrastructure
- Begin developing science metrics for analysis

Configuration

Noise floor read from Prepared frames (Ninja recolored S5)

Results

- O(1%) data losses
- Latency ~5s (LLO, LHO), ~9s VIRGO
- Problems when data streams stopped, memory issues

ER2 (Jul - Aug 2012)

- Goals:
 - Reduce data loss to <0.1%
 - Closer connection to DAQ at LLO
 - Use ODC channel for DQ
 - Recolored PSL noise.
 - Test analysis event generation
- Configuration:
 - Ninja synthesized noise (recolored s5).
 - Late test using recolored PSL.
- Results:
 - < 0.06% of frames lost in transfer during run</p>

ER3 (Jan - Feb 2013)

Goals

- Generate noise floor from instrumental data (PSL).
- Add proxy calibration pipeline (adaptive recoloring filter)
- Improve ER2 Services

Configuration:

- Use recolored PSL PD signal for noise floor
- Use gstreamer-based process for recoloring as proxy for calibration pipeline.

Results

- Used unstable PSL channel after PD failed.
- Efficient reconstruction of CDC injections > 10Hz

ER4 and Later

- Goals for ER4
 - Improved reliability, transparency, control
 - Dashboard
 - Use data from DRMI at LLO if available
 - Improve data recoloring algorithm
- Future improvements
 - Real-time detector characterization
 - Feed more complex data quality information (vetos, segments) to analysis.

Summary

- Near real time analysis will be necessary to exploit detector sensitivity fully.
- Real time analysis environment will require specially designed pipelines to deal with online data issues.
- Simulated h(t) data streams are used to develop and test the low-latency data distribution system and the coherent analysis pipelines.
- A software engineering run program is now underway to drive development and testing of the pipeline implementations.