*** 8th Chiral Dynamics *** Pisa, June 29-July 3, 2015

Comprendre le monde, construire l'avenir®

INSTITUT DE PHYSIQUE NUCLÉAIR

ORSAY

Bachir Moussallam

work with: Miguel Albaladejo

Motivations

- Chiral dynamics important for the η meson ($\Gamma=1.3~\text{KeV}$)
- Three flavour expansion: $\eta \rightarrow 3\pi$ modes driven by

 $\frac{m_d - m_u}{2m_s - m_u - m_d}$

Small QED contrib. \Rightarrow key process for determination of quark masses .

- $\label{eq:chiral expansion of $\eta \to 3\pi$ amplitude at NLO[Gasser, Leutwyler NP B250(1985)539] is very predictive.}$
- But: precise measurements of Dalitz plot energy dependence e.g. α parameter in $\eta \rightarrow 3\pi^0$ [Crystal Ball (2001,2009), WASA(2007,2009), KLOE(2008)]

$$\begin{array}{ll} \alpha^{exp} = & -(3.15\pm 0.15)\cdot 10^{-3} \\ \alpha^{NLO} = & +1.41\cdot 10^{-3} \end{array}$$

not reproduced at NLO

- NNLO amplitude computed [Bijnens, Ghorbani
 JHEP0711(2007)030] but model dependence (C_i couplings)
- Observation: final-state interaction mistreated by ChPT then[Kambor, Wiesendanger, Wyler (1996), Anisovich, Leuwyler (1996)]
 - → Use ChPT in unphysical region (small/no FSI)
 - → Implement FSI via Khuri-Treiman formalism
- In this talk: extend Khuri-Treiman to accomodate inelastic rescattering involving KK channel.
 - → Goal: account for " $a_0 f_0$ mixing" effect (actually double resonance effect)
 - → Study to what extent it influences <u>energy dependence</u> at low energy.

Khuri-Treiman: elastic case

- Khuri and Treiman[Phys. Rev. 119 (1960) 1115]: $\pi\pi$ rescattering in $K \rightarrow 3\pi$
 - → Consider $K\pi \rightarrow \pi\pi$ instead of $K \rightarrow 3\pi$, write fixed t dispersion relations, S-wave rescattering.
- Application to $\eta \rightarrow 3\pi$: [Kambor, Wiesendanger, Wyler, NP B465(1996)215, Anisovich, Leutwyler PL B375(1996)335]
 - \rightarrow Rescattering: S+P waves, "reconstruction theorem"

$$\begin{aligned} \mathfrak{T}^{\eta\pi^0\to\pi^+\pi^-}(s,t,u) &= -\boldsymbol{\epsilon}_L \times \\ \left[M_0(s) - \frac{2}{3}M_2(s) + (s-u)M_1(t) + M_2(t) + (t\leftrightarrow u) \right] \end{aligned}$$

 $\rightarrow \epsilon_L$ carries information on quark masses

$$\epsilon_L = \frac{m_d^2 - m_u^2}{m_s^2 - m_{ud}^2} \frac{m_K^2}{m_\pi^2} \frac{m_K^2 - m_\pi^2}{3\sqrt{3}F_\pi^2}$$

 Khuri-Treiman eqs re-expressed using Omnès-Muskhelishvili technique involving <u>four</u> polynomial parameters ([AL (1996)])

$$M_0(w) = \Omega_0(w) \left[\alpha_0 + w \beta_0 + w^2 (\gamma_0 + \hat{l}_0(w)) \right]$$
$$M_1(w) = \Omega_1(w) w \left(\beta_1 + \hat{l}_1(w) \right)$$
$$M_2(w) = \Omega_2(w) w^2 \hat{l}_2(w)$$

Omnès functions

$$\Omega_{I}(s) = \exp\left[\frac{s}{\pi} \int_{4m_{\pi}^{2}}^{\infty} \frac{ds'}{s'(s'-s)} \,\delta_{I}(s')\right]$$

Integrals

$$\hat{l}_{I}(w) = -\frac{1}{\pi} \int_{4m_{\pi}^{2}}^{\infty} ds' \, \frac{\operatorname{Im}\left(1/\Omega_{I}(s')\right)}{(s')^{n}(s'-w)} \, \hat{M}_{I}(s')$$

where $\hat{M}_{I}(s')$: left-cut parts in $\eta \pi \rightarrow (\pi \pi)_{I}$ partial-waves with J = 0, 1 and I = 0, 1, 2

$$\begin{split} \mathfrak{T}_0^0(s) &= \frac{\sqrt{6}\epsilon_L}{32\pi} \left(M_0(s) + \hat{M}_0(s) \right) \\ \mathfrak{T}_1^1(s) &= \frac{\epsilon_L}{48\pi} \kappa(s) \left(M_1(s) + \hat{M}_1(s) \right) \\ \mathfrak{T}_0^2(s) &= -\frac{\epsilon_L}{16\pi} \left(M_2(s) + \hat{M}_2(s) \right) \end{split}$$

- \rightarrow (Elastic) unitarity eqs. for \mathcal{T}_{I}^{J} obeyed.
- → \hat{M}_I expressed in terms of $M_I \Rightarrow \underline{\text{Self-consistent}}$ set of equations for M_I functions.
- → Technical issues (left-hand cut overlaps w. right-hand cut): see [KWW(1996), Stefan Lanz, PHD thesis (2011)]

Matching with ChPT at NLO:

$$\mathfrak{T}^{KT}(s, t, u) - \mathfrak{T}^{ChPT}(s, t, u) = O(p^6)$$

 \rightarrow Use decomp. theorem and

disc
$$\left[M_{I}(w) - \overline{M}_{I}(w)\right] = O(p^{6})$$

→ Expand $\mathcal{T}^{KT} - \mathcal{T}^{ChPT}$ as polynomial in *s*, *t*, *u*: four matching equations

$$\begin{aligned} \alpha_{0} &= 9\left(\frac{1}{2}\bar{M}_{2}^{\prime\prime}-\hat{l}_{2}\right)s_{0}^{2}+3(\bar{M}_{2}^{\prime}-\bar{M}_{1})s_{0}+\bar{M}_{0}+\frac{4}{3}\bar{M}_{2}\\ \beta_{0} &= -9\left(\frac{1}{2}\bar{M}_{2}^{\prime\prime}-\hat{l}_{2}\right)s_{0}+\bar{M}_{0}^{\prime}+3\bar{M}_{1}-\frac{5}{3}\bar{M}_{2}^{\prime}-\Omega_{0}^{\prime}\alpha_{0}\\ \beta_{1} &= \bar{M}_{1}^{\prime}+\frac{1}{2}\bar{M}_{2}^{\prime\prime}-\hat{l}_{1}-\hat{l}_{2}\\ \gamma_{0} &= \frac{1}{2}\bar{M}_{0}^{\prime\prime}+\frac{2}{3}\bar{M}_{2}^{\prime\prime}-\hat{l}_{0}-\frac{4}{3}\hat{l}_{2}-\frac{1}{2}\Omega_{0}^{\prime\prime}\alpha_{0}-\Omega_{0}^{\prime}\beta_{0} \end{aligned}$$

- Formally analogous to [AL(1996)] but: important difference:
 - \rightarrow Approximation $\gamma_0\simeq 0$ was used [AL(1996), S. Lanz (2011)]
 - \twoheadrightarrow Approximation valid only if phase-shift $\delta_0^0(s) \to 0$ when $s>1~{\rm GeV^2}$

→ For more general prescriptions (e.g. $\delta_0^0(s) \rightarrow \pi$) one must let γ_0 adapt itself.

Khuri-Treiman: $K\overline{K}$ inelastic extension

Amplitudes to consider:

$$\mathcal{K}^{+}\mathcal{K}^{-}$$
, $\mathcal{K}^{0}\bar{\mathcal{K}}^{0}$, $\mathcal{K}^{+}\bar{\mathcal{K}}^{0} \longrightarrow \pi^{+}\pi^{-}$, $\pi^{0}\pi^{0}$, $\pi^{+}\pi^{0} \longrightarrow \eta\pi^{0}$, $\eta\pi^{+}$

- Contain both isospin <u>conserving</u> and isospin <u>violating</u> components (in general)
- Isospin violating amplitudes defined after partial-wave projection (s + t + u depends on $m_{K^+}^2$, $m_{K^0}^2$)
- Consequence
 - \rightarrow No reconstruction theorem for IV amplitudes
 - → We will need some modelling of the partial-wave amplitudes

• Consider $\underline{J=0}$

→ Isospin conserving amplitudes

$$\frac{\mathbf{T}^{(0)}}{\prod_{i=1}^{(0)}} \begin{pmatrix} \pi\pi \to \pi\pi & \pi\pi \to K\overline{K} \\ \pi\pi \to K\overline{K} & K\overline{K} \to K\overline{K} \end{pmatrix}_{I=0}$$

$$\frac{\mathbf{T}^{(1)}}{\prod_{i=1}^{(1)}} \begin{pmatrix} \eta\pi \to \eta\pi & \eta\pi \to K\overline{K} \\ \eta\pi \to K\overline{K} & K\overline{K} \to K\overline{K} \end{pmatrix}_{I=1}$$

$$\frac{T^{(2)}}{\prod_{i=1}^{(2)}} \pi^{+}\pi^{0} \to \pi^{+}\pi^{0}$$

→ Isospin violating amplitudes

$$I = 0 \rightarrow 1 \quad \mathbf{T}^{(01)}: \begin{pmatrix} (\pi\pi)_0 \rightarrow \eta\pi & (K\overline{K})_0 \rightarrow \eta\pi \\ (\pi\pi)_0 \rightarrow (K\overline{K})_1 & (K\overline{K})_0 \rightarrow (K\overline{K})_1 \end{pmatrix}$$

$$I = 1 \rightarrow 2 \quad \mathbf{T}^{(12)}: \begin{pmatrix} \eta\pi^+ \rightarrow \pi^+\pi^0 \\ K^+\overline{K}^0 \rightarrow \pi^+\pi^0 \end{pmatrix}$$

Unitarity relation (J=0): <u>first order</u> in isospin breaking:
 → T⁽⁰¹⁾ relation:

$$Im [\mathbf{T}^{(01)}] = \mathbf{T}^{(0)*} \Sigma^{0} \mathbf{T}^{(01)} + \mathbf{T}^{(01)*} \Sigma^{1} \mathbf{T}^{(1)} + \mathbf{T}^{(0)*} \begin{pmatrix} 0 & 0 \\ 0 & \Delta \sigma_{\mathcal{K}} \end{pmatrix} \mathbf{T}^{(1)}$$

$$\Delta \sigma_{K}(s) = \frac{1}{2}(\sigma_{K^{+}}(s) - \sigma_{K^{0}}(s))$$

with $\sigma_{P}(s) = \sqrt{1 - 4m_{K}^{2}/s}$
[Achasov, Devyanin, Shestakov,
PL B88(1979)367]

$$\rightarrow$$
 T⁽¹²⁾ relation:

$$\operatorname{Im} [\mathbf{T}^{(12)}] = \mathbf{T}^{(1)*} \, \Sigma^1 \, \mathbf{T}^{(12)} + \mathbf{T}^{(12)*} \sigma_{\pi} \, \mathcal{T}^{(2)}$$

Separate PW amplitudes into left-cut and right-cut components

$$\mathbf{T}^{(01)} = rac{\sqrt{6}\epsilon_L}{32\pi} \left(\mathbf{M}_0 + \hat{\mathbf{M}}_0
ight)$$
, $\mathbf{T}^{(12)} = -rac{\epsilon_L}{16\pi} \left(egin{matrix} M_2 + \hat{M}_2 \ G_{12} + \hat{G}_{12} \end{array}
ight)$

Generalized KT equations:

$$\mathbf{M}_{0}(w) = \boldsymbol{\Omega}_{0}(w) \left[\mathbf{P}_{0}(w) + w^{2} \left(\hat{\mathbf{I}}_{A}(w) + \hat{\mathbf{I}}_{B}(w) \right) \right]^{t} \boldsymbol{\Omega}_{1}(w)$$

- $\rightarrow \Omega_{I}$: Omnès-Muskhelishvili matrices
- \rightarrow **P**₀ : polynomials, 12 parameters

$$\overset{\bullet}{\mathbf{I}} \text{ "left-cut" integrals}$$

$$\hat{\mathbf{I}}_{A}(w) = \\ -\frac{1}{\pi} \int_{4m_{\pi}^{2}}^{\infty} \frac{ds'}{(s')^{2}(s'-w)} \left[\operatorname{Im} \Omega_{\mathbf{0}}^{-1} \hat{\mathbf{M}}_{\mathbf{0}}^{t} \Omega_{\mathbf{1}}^{-1} + \Omega_{\mathbf{0}}^{-1*} \hat{\mathbf{M}}_{\mathbf{0}} \operatorname{Im}^{t} \Omega_{\mathbf{1}}^{-1} \right]$$

$$\hat{\mathbf{I}}_{B}(w) = \\ \frac{32}{\sqrt{6}\epsilon_{L}} \int_{4m_{\pi}^{2}}^{\infty} \frac{ds' \Delta \sigma_{K}(s')}{(s')^{2}(s'-w)} \Omega_{\mathbf{0}}^{-1*} \mathbf{T}^{(0)*} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{T}^{(1) t} \Omega_{\mathbf{1}}^{-1}$$

 Note on the <u>numerics</u>: Each component of **M**₀ must satisfy dispersion relation:

$$[\mathbf{M}_{0}]_{ij}(w) = \alpha_{ij} + \beta_{ij}w + \frac{w^{2}}{\pi} \int_{4m_{\pi}^{2}}^{\infty} \frac{ds'}{(s')^{2}(s'-w)} \operatorname{disc}[[\mathbf{M}_{0}]_{ij}](s')$$

 \rightarrow We do check that it works !

→ Use this for computing angular integrations [*w* integrals (complex contour) performed analytically]

$\eta\pi$ scattering model:

- We have developped a two-channel unitary model for T⁽¹⁾ [manuscript with M. Albaladejo to appear soon]
 - 1) Reproduces $a_0(980)$, $a_0(1450)$ complex poles
 - 2) Matches with $\eta \pi / K \overline{K}$ scattering amplitudes from NLO ChPT at low energies
 - 3) Also allow to compute I = 1 scalar $\eta \pi$ and $K\overline{K}$ form factors and constrained by ChPT results from scalar radii: $\langle r^2 \rangle_S^{\eta \pi}$, $\langle r^2 \rangle_S^{K\overline{K}}$.

- Simple model for KK amplitudes:
 - \rightarrow set corresponding $\hat{\mathbf{M}}_{ij} = 0$ [only $\hat{\mathbf{M}}_{11} \neq 0$]
 - \rightarrow corresponding polynomial parameters determined by matching with <u>ChPT at $O(p^2)$ </u>

 $\eta \to \pi^+ \pi^- \pi^0$ and $\eta \pi^0 \to \pi^+ \pi^-$ amplitudes

 $\eta \rightarrow \pi^+ \pi^- \pi^0$ at low energy • Along u = s line (Adler zero):

$\eta \to \pi^0 \pi^0 \pi^0$ and $\eta \pi^0 \to \pi^0 \pi^0$ amplitudes

→ Influence of inelasticity more visible at low energy

Comparison with experiment

Dalitz plot parameters

Accurate description with 4 parameters

$$|\mathcal{T}_{c}(X, Y)|^{2} = |\mathcal{T}_{c}(0, 0)|^{2} \left(1 + aY + bY^{2} + dX^{2} + fY^{3}\right)$$

Charge conjugation : $X \rightarrow -X$ invariance

Neutral decay: description with one parameter

$$|\mathcal{T}_n(X, Y)|^2 = |\mathcal{T}_n(0, 0)|^2 (1 + 2 \alpha (X^2 + Y^2))$$

Comparison of amplitude variation with WASA

[WASA col., Phys.Rev.C90 (2014)4, 045207]

Dalitz plot parameters

(Khuri-Treiman equations with polynomial matching to NLO ChPT)

$$\eta \to \pi^+\pi^-\pi^0$$

Param.	<i>O</i> (<i>p</i> ⁴)	KT-elastic	KT-coupled	WASA	KLOE
а	-1.320	-1.154	-1.146	-1.144(18)	-1.090(14)
b	0.422	0.202	0.181	0.219(19)	0.124(11)
f	0.015	0.107	0.116	0.115(37)	0.140(20)
d	0.083	0.088	0.090	0.086(18)	0.057(17)

$$\eta \to \pi^0 \pi^0 \pi^0$$

Param.	<i>O</i> (<i>p</i> ⁴)	KT-elastic	KT-coupled	PDG
α	+0.014	-0.027	-0.031	-0.0315(15)

- Khuri-Treiman formalism for $\eta \rightarrow 3\pi$ extended to accomodate inelasticity to $K\overline{K}$ channels. Implementation with simple approximation for left-hand cuts of $K\overline{K}$ amplitudes
- Khuri-Treiman amplitudes + polynomial matching to NLO ChPT (with <u>no approximation</u>) seem compatible with recent experiments
- Influence of $K\overline{K}$ channels on Dalitz plot parameters estimated to be 5 10%.
- Effect of a_0 , f_0 superposition rather large at 1 GeV $[\pi^+\pi^- \rightarrow \eta\pi^0$ amplitude measurable ?]

