

SEARCH FOR NEW PHYSICS WITH LONG-LIVED PARTICLES AT THE LHC

Daniele del Re

Sapienza Università & INFN Sezione Roma

Antonio Policicchio

Universita' della Calabria & INFN Sezione Cosenza

NEW PHYSICS AND LONG-LIVED PARTICLES

Long-lived exotic particles (LLP) with striking signatures predicted by many extensions of the Standard Model

- Heavy, long-lived, charged particles (R-hadrons, Sleptons)
 - speed < c</p>
 - charge not equal to ±1e
 - lifetimes > few ns. Travel distances larger than the typical collider detector and appear stable
- Particles decaying in the detector far from interaction point (neutralinos in GMSB, mass-degenerate gauginos, particles of a Hidden Sector)
 - decay in displaced vertexes (jets, leptons, photons)
 - delayed interaction with calorimeters due to extra flight-length

TYPICAL LONG-LIVED ANALYSIS

• **Detector-based exotic signatures** required:

- dE/dx
- time of flight
- displaced vertex
- disappearing tracks
- stopped particles
- **Possible additional requirements** to identify SUSY-like topology:
 - MET
 - large jet activity (H_T, p_T(leading jet)>threshold)
 - the less the extra requirements, the smaller the model dependence
- Specific control samples to model exotic signature in detector:
 - non-trivial job. LLP signatures look like detector noise
 - deep knowledge of detector performance

SIGNATURES: DE/DX

- Large ionization left in tracker detectors by high mass R-hadrons or sleptons
- Enhanced if charge ≠ 1

SIGNATURES: TIME OF FLIGHT

Slow moving high mass stable charged particles identified using timing measured in muon system and calorimeter

L=flight distance

 $\boldsymbol{\boldsymbol{\theta}}$ obtained as an average over the detector hits

SIGNATURES: DISPLACED VERTEXES

- Long-lived particles decaying in charged particles (hadrons, leptons) identified via vertexing
- Requirement of small activity along the track in detector sectors closer to the beamspot

SIGNATURES: DISAPPEARED/STOPPED PARTICLES

Long-lived charged exotic particles decaying in flight within the detector

identified as truncated tracks

• small activity in the calorimeter along the propagated track direction

 track inefficiency need to be modeled carefully

Stopping position in r-z view for a 600 GeV gluino

charged particles with low velocity may stop in detector volume

- preferentially in the densest detector elements (calorimeters)
- When decaying, energy deposit similar
 to jet
- Searched when no pp collision (gaps between proton bunches)

FIRST SUMMARY ON LONG-LIVED SEARCHES

Several striking exotic signatures

- some searches use more than one
- Very generic searches, driven by signatures
 - open-minded searches
 - models are used as benchmark to report results
- Limits are very model dependent
- Results are limited by detector acceptance and triggers (nonstandard signatures)
 - difficult to find good control samples

• Experimentally challenging analyses

- look where background for SM analyses is
- implementation of ad-hoc triggers

HEAVY STABLE CHARGED PARTICLES

- sleptons: massive, charged and metastable in GMSB
- R-hadrons: bound states formed by squarks and gluinos hadronizing with a light SM quarks system, several electric charges (and the electric charge can change due to nuclear scattering in the detector)

	composition	notation
R-mesons	$R = \tilde{g}q\bar{q}, (\tilde{q}\bar{q})$	R^+,R^-,R^0
R-baryons	$R = ilde{g}qqq, (ilde{q}qq)$	R^{++}, R^+, R^-, R^0
R-gluinoballs	$R = \tilde{g}g$	R^0

SMP	LSP	Scenario	Conditions arXiv:hep-ph/0611040		
$\tilde{\tau}_1$	$\tilde{\chi}_1^0$	MSSM	$\tilde{\tau}_1$ mass (determined by $m^2_{\tilde{\tau}_{L,R}}, \mu, \tan\beta,$ and $A_\tau)$ close to mass.	$\tilde{\chi}_1^0$	
	\tilde{G}	GMSB	Large N, small M, and/or large $\tan \beta$.		
		ĝMSB	No detailed phenomenology studies, see [23].		
		SUGRA	Supergravity with a gravitino LSP, see [24].		
	$ ilde{ au}_1$	MSSM	Small $m_{\tilde{\tau}_{L,R}}$ and/or large $\tan \beta$ and/or very large A_{τ} .		
		AMSB	Small m_0 , large tan β .		
		ğMSB	Generic in minimal models.		
$\tilde{\ell}_{i1}$	\tilde{G}	GMSB	$\tilde{\tau}_1$ NLSP (see above). \tilde{e}_1 and $\tilde{\mu}_1$ co-NLSP and also SMP small tan β and μ .	for	
	$\tilde{\tau}_1$	\tilde{g} MSB	\tilde{e}_1 and $\tilde{\mu}_1$ co-LSP and also SMP when stau mixing small.		
$\tilde{\chi}_1^+$	$\tilde{\chi}_1^0$	MSSM	$m_{\tilde{\chi}_1^+} - m_{\tilde{\chi}_1^0} \lesssim m_{\pi^+}$. Very large $M_{1,2} \gtrsim 2 \text{ TeV} \gg \mu $ (Hig- gsino region) or non-universal gaugino masses $M_1 \gtrsim 4M_2$, with the latter condition relaxed to $M_1 \gtrsim M_2$ for $M_2 \ll \mu $. Natural in O-II models, where simultaneously also the \tilde{g} can be long-lived near $\delta_{\text{GS}} = -3$.		
		AMSB	$M_1 > M_2$ natural. m_0 not too small. See MSSM above.		
\tilde{g}	$ ilde{\chi}^0_1$	MSSM	Very large $m_{\tilde{q}}^2 \gg M_3$, e.g. split SUSY.		
	\tilde{G}	GMSB	SUSY GUT extensions [25-27].		
	\tilde{g}	MSSM	Very small $M_3 \ll M_{1,2}$, O-II models near $\delta_{\rm GS} = -3$.		
		GMSB	SUSY GUT extensions [25-29].		
\tilde{t}_1	$\tilde{\chi}_1^0$	MSSM	Non-universal squark and gaugino masses. Small $m_{\tilde{q}}^2$ a M_3 , small tan β , large A_t .	and	
\tilde{b}_1			Small $m_{\tilde{q}}^2$ and M_3 , large $\tan\beta$ and/or large $A_b\gg A_t.$		

HSCP: ANALYSIS TECHNIQUE

- Information from dE/dx and p_T (tracker) used to calculate mass
- Time of flight from muon detector and calorimeters to measure $\boldsymbol{\beta}$
 - calibrated using cosmics and $Z \rightarrow \mu^+ \mu^-$
- Background dominated by high p_T, mis-reconstructed muons

HSCP RESULTS: ATLAS

- No indication of signal above expected background
- Cross-section limits at 95% confidence level → translating into limits on the R-hadron/slepton mass

HSCP RESULTS: CMS

- Results with ~19fb⁻¹. No excess observed
- Results for fractional/multiple charge too

DISAPPEARING TRACKS

- In scenarios with mass-degenerate gauginos (predicted by AMSB)
 chargino lifetime O(0.1 ns), decay to neutralino and low E pion
- Selected as tracks with missing hits in transition radiation trk (TRT)
- Triggered with ISR jet
- No excess

ATLAS (7 TeV, 1.02 fb⁻¹, strong prod.)

250

300

m_{e[±]} [GeV]

LEP2 exclusion

200

'Stable' ž

150

10

100

STOPPED PARTICLES

- Dedicated calorimeter trigger to selected events in gaps between
 LHC beam crossings
 - p⊤(jet)>50GeV
- Search interval of 246 hours
- Selection based on jet p_T (>70GeV) and criteria to reject residual backgrounds
 - beam halo, cosmics, out-of-time pp collisions, detector noise
- Limits presented in a long-lived gluino or stop in R-hadrons scenario

http://arxiv.org/abs/1207.0106

DISPLACED PHOTONS: THEORY AND ANALYSIS

- In models like Gauge Mediated
 Supersymmetry Breaking, Neutralino
 decays to Gravitino (lightest susy particle)
 - Missing ET
 - high pT jets and one or two photons
- Neutralino can be long-lived
 - displaced/delayed photons
- Tagged using em calorimeter time and pointing direction
 - design time resolution: 100 ps or better
 - 1.5 cm pointing resol. with ATLAS calorimeter
- Topology requirements
 - >=1 γ p_T>100GeV CMS, 2 γ p_T>50GeV ATLAS
 - large Missing E_T

DISPLACED PHOTONS: CMS RESULTS

- Additional requirement of 3 high p_T jets
- No excess observed
- Limits are set varying Neutralino masses and lifetimes

DISPLACED PHOTONS: ATLAS RESULTS

- Use of distance of closest approach of the projected photon direction
 - timing also as a crosscheck
- Requirement of two high p_T photons
- No excess observed

DISPLACED VERTEXES: MODELS

Hidden Sector weakly coupled to SM

- motivated by $(g-2)_{\mu}$ and Pamela results
- Communicate through heavy mediator particles (Higgs, Z´, loop of SUSY particles)
- Heavy particles (e.g. Higgs boson) decay to particles of the hidden sector and back to the standard sector via:
 - hadronic jets
 - collimated jets of leptons: lepton-jets
- Hidden particles can be long-lived and neutral

Identified reconstruction displaced vertexes

DISPLACED HEAVY FERMIONS

- Pairs of back-to-back neutral particles decaying in the muon system (2 vertices in muon system, isolation in calorimeter)
- Signature of $H \rightarrow \pi_v \pi_v$ where π_v is a long-lived pseudoscalar from Hidden Sector decaying to heavy fermion pair (mainly b-bbar)
- No excess. Limits assuming π_v assuming 100% BR of $h \rightarrow \pi_v \pi_v$
- Ongoing developments to use also inner tracking and to search for π_v decaying in calorimeters
 Phys.Rev.Lett. 108 (2012) 251801

del Re - Policicchio

DISPLACED LEPTONS: MUON JETS IN ATLAS

- Signature: two isolated boosted pairs of muons with displaced vertex (reco'ed only with Muon System)
- Benchmark model: $H \rightarrow 2 f_{d2}$, $f_{d2} \rightarrow LSP + \gamma_d$
 - γ_d is a dark photon (long-lived) and f_{d2} an hidden fermion
- No excess: exclusion limit as a function of proper lifetime

DISPLACED LEPTONS: CMS

- Signature of oppositely charged leptons originating at a separated secondary vertex within the inner tracker volume
- **Benchmark model:** Higgs $\rightarrow 2X, X \rightarrow I^+I^-$
- Main selection variable: transverse decay length significance L_{xy}/σ_{xy}

No excess

DISPLACED VERTEXES WITH TRACK+MUON

• In RPV SUSY, neutralino can decay in muon + jets

- muon good for triggering, jets for vertexing
- dedicated vertex reconstruction

No excess seen

http://arxiv.org/abs/1210.7451

SUMMARY

- In several SUSY and Exotics Models interesting signatures with long-lived particles
 - extend phase-space of searches
- Searches for long-lived particles very challenging
 - look where background for SM analyses is
 - full understanding of the detectors and "non-standard" analysis techniques needed
- So far, no evidence of new physics
- Most of the analysis being updated and improved with full statistics
 - we still have 20 fb⁻¹ 2012 data to look at
- Lots of space for new ideas

COMPARISON BETWEEN THE TWO EXPERIMENTS

Analysis	ATLAS	CMS	
HSCP	4.7 fb ⁻¹ (7TeV)	5 fb ⁻¹ (7TeV) + 18.8 fb ⁻¹ (8TeV)	
Disappearing tracks	4.7 fb ⁻¹ (7TeV) work in pro-		
Stopped particles	Stopped particles31 pb ⁻¹ (7TeV)4 fb ⁻¹ (7TeV)		
Displaced photons	4.8 fb ⁻¹ (7TeV)	4.9 fb ⁻¹ (7TeV)	
Displaced heavy fermions	1.9 fb ⁻¹ (7TeV)	work in progress	
Displaced leptonjets	1.9 fb ⁻¹ (7TeV)	5.1 fb ⁻¹ (7TeV)	
Displaced vertices + muon	4.4 fb ⁻¹ (7TeV)	-	

ATLAS SUSY Searches* - 95% CL Lower Limits

Direct $\tilde{\chi}_{1}^{-}$ pair prod. (AMSB) : long-lived $\tilde{\chi}_{1}^{\pm}$	L=4.7 tb ⁻¹ , 7 TeV [1210.2852]	220 GeV $\tilde{\chi}_1^{\pm}$ mass	$(1 < \tau(\tilde{\chi}_{1}^{\pm}) < 10 \text{ ns})$	
Stable g̃, R-hadrons : low β, βγ	L=4.7 tb ⁻¹ , 7 TeV [1211.1597]		985 GeV	j mass
GMSB, stable $\tilde{\tau}$: low β	L=4.7 tb ⁻¹ , 7 TeV [1211.1597]	300 Gey 7 mas	SS (5 < tanβ < 20)	
GMSB, $\tilde{\chi}^0_{,} \rightarrow \gamma \tilde{G}$: non-pointing photons	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2013-016]	230 GeV $\widetilde{\chi}_1^\circ$ mass	$(0.4 < \tau(\tilde{\chi}_1^0) < 2 \text{ ns})$	
$\widetilde{\chi}^{o}_{+} \rightarrow qq\mu \text{ (RPV)}': \mu + heavy displaced vertex}$	L=4.4 tb ⁻¹ , 7 TeV [1210.7451]		700 Gev q mass	$1 \text{ mm} < c\tau < 1 \text{ m}, \tilde{g} \text{ decoupled}$

CMS EXOTICA 95% CL EXCLUSION LIMITS (TEV)

ISSUES FOR DISCUSSION

- Current activities
 - extend analyses to the full statistics
- Model-independent approach
 - to help theoreticians in the interpretation
 - does it make sense to have a "rivet"-like approach
- Better definition of control samples
- Next LHC run
 - upgrade of the detectors (phase two / sLHC): keep in mind the LL signatures
 - develop more ad-hoc triggers
 - larger use of data parking (delayed data stream)
 - take advantage of a much larger statistics (~100 fb⁻¹)
 - e.g. search for rare Higgs decays
- In general, invest more in these analyses (once most of SUSY/exotica phase space will be explored, investigate LL)
 - lot of space for master degree and PhD theses

LEPTONJETS: CURRENT ACTIVITY

- Investigate more complex decay modes → higher particle multiplicity in the final state and final states with electrons, muons and pions
- Extend search to be as more model independent as possible → constrain many theoretical models

LJ I LJ 2	electrons	muons	electrons +muons	light hadrons	leptons+light hadrons
electrons					
muons		only 2 µ + 2 µ in 201 l			
electrons +muons					
light hadrons					
leptons+light hadrons					

= work in progress

DISPLACED VERTICES/JETS: CURRENT ACTIVITY

- Extend previous analysis to the entire collected statistics
 - Search for displaced vertices in Muon System
 - Search for displaced vertices in Inner Tracker
 - Search for two π_v 's decaying both in the Hadronic Calorimeter (well advanced)

HSCP: CURRENT ACTIVITY

- Update of the analysis on the 8 TeV data expected soon
- Interesting planned improvements:

I. possibility for **R-hadrons** to **decay** or to interact with the detector material and to **change charge** (charged \rightarrow neutral within a certain lifetime O(ns) only detected by ID; neutral \rightarrow charged no track in the ID but detected by MS)

• for the current analysis, only a simplified study of variation in efficiency with R-hadron lifetime \rightarrow perform the new analysis as lifetime dependent (particularly sensible for ID-only approach)

2. investigating **different triggers**, both for muons and for R-hadrons

HSCP: ANALYSIS TECHNIQUE

Combination of **several detector inputs** to be sensitive to slepton (slow muon-like) and R-hadrons (maybe with short lifetime)

BECHMARK SCENARIO FOR STAU IN HSCP

Par.	Description	
Λ	SUSY breaking scale	
M _m	Messenger mass scale	
tanβ	Ratio of Higgs vev	
N _m	Number of SU(5) messenger multiplets	
sign(μ)	μ from Higgs sector	
Cgrav	Sets NLSP lifetime	

30-160GeV depending on stau mass
250TeV
10
3
positive
10⁴ (lifetime to avoid slepton decaying in det)