

Low-t reactions: π^0 and η production in Primakoff processes

Bastian Kubis

Helmholtz-Institut für Strahlen- und Kernphysik (Theorie)

Bethe Center for Theoretical Physics

Universität Bonn, Germany

IWHSS 2017 Cortona 4/4/2017

Outline

Introduction & motivation

- Primakoff reactions: $\gamma \pi^- \rightarrow \ldots$
- From chiral perturbation theory to dispersion relations
- Input to hadronic light-by-light scattering

Extracting the chiral anomaly

• ... from $\gamma\pi^- \rightarrow \pi^-\pi^0$

Understanding the decay $\eta \rightarrow \pi^+ \pi^- \gamma$

• ... and why $\gamma \pi^- \rightarrow \pi^- \eta$ might be important for that

Summary / Outlook

Primakoff reactions: $\gamma \pi^- ightarrow \ldots$

pion beam at small momentum transfer:

photon exchange $\propto 1/t \gg$ hadronic reactions

Primakoff reactions: $\gamma \pi^- ightarrow \ldots$

• pion beam at small momentum transfer:

photon exchange $\propto 1/t \gg$ hadronic reactions

- $\gamma \pi^- \rightarrow \gamma \pi^-$: Compton scatt.
 - \longrightarrow pion polarisabilities
 - $\longrightarrow \text{fundamental information} \\ \text{on pion structure}$

COMPASS 2015

Primakoff reactions: $\gamma \pi^- \rightarrow \ldots$

• pion beam at small momentum transfer:

photon exchange $\propto 1/t \gg$ hadronic reactions

COMPASS 2015

• $\gamma \pi^- \rightarrow (3\pi)^-$:

 \longrightarrow low-energy pion dynamics COMPASS 2012

Primakoff reactions: $\gamma\pi^- ightarrow \ldots$

• pion beam at small momentum transfer:

photon exchange $\propto 1/t \gg$ hadronic reactions

- $\gamma \pi^- \rightarrow \gamma \pi^-$: Compton scatt.
 - \longrightarrow pion polarisabilities
 - $\longrightarrow fundamental \ information \\ on \ pion \ structure$

COMPASS 2015

• $\gamma \pi^- \rightarrow (3\pi)^-$:

 \rightarrow low-energy pion dynamics COMPASS 2012

• $\gamma \pi^- \rightarrow \pi^- \pi^0$: testing the Wess–Zumino–Witten chiral anomaly

Primakoff reactions: $\gamma \pi^- ightarrow \ldots$

• pion beam at small momentum transfer:

photon exchange $\propto 1/t \gg$ hadronic reactions

- $\gamma \pi^- \rightarrow \gamma \pi^-$: Compton scatt.
 - \longrightarrow pion polarisabilities
 - $\longrightarrow fundamental \ information \\ on \ pion \ structure$

COMPASS 2015

• $\gamma \pi^- \rightarrow (3\pi)^-$:

 \longrightarrow low-energy pion dynamics COMPASS 2012

• $\gamma \pi^- \rightarrow \pi^- \pi^0$: testing the Wess–Zumino–Witten chiral anomaly

• $\gamma \pi^- \rightarrow \pi^- \eta$: — "

Primakoff reactions: $\gamma\pi^- ightarrow \ldots$

• pion beam at small momentum transfer:

photon exchange $\propto 1/t \gg$ hadronic reactions

- $\gamma \pi^- \rightarrow \gamma \pi^-$: Compton scatt.
 - \longrightarrow pion polarisabilities
 - $\longrightarrow fundamental \ information \\ on \ pion \ structure$

COMPASS 2015

• $\gamma \pi^- \rightarrow (3\pi)^-$:

 \longrightarrow low-energy pion dynamics COMPASS 2012

- $\gamma \pi^- \rightarrow \pi^- \pi^0$: testing the Wess–Zumino–Witten chiral anomaly
- $\gamma \pi^- \rightarrow \pi^- \eta$:
- \rightarrow many of these motivated by chiral perturbation theory
- more fundamental interest of anomalous processes: link to anomalous magnetic moment of the muon

Light mesons without modeling

Chiral perturbation theory...

• Effective field theory: simultaneous expansion in

quark masses + small momenta

- > systematically improvable
- well-established link to QCD: all symmetry constraints
- interrelates many different observables

Light mesons without modeling

Chiral perturbation theory...

• Effective field theory: simultaneous expansion in

quark masses + small momenta

- > systematically improvable
- well-established link to QCD: all symmetry constraints
- interrelates many different observables

... and its limitations

- strong final-state interactions render corrections large
- physics of light pseudoscalars (π , K, η) only
 - \triangleright (energy) range limited by resonances: $f_0(500)$, $\rho(770)$...
 - \triangleright unitarity (\simeq probability cons.) only perturbatively fulfilled
- \longrightarrow find effective ways to resum rescattering / restore unitarity
- \longrightarrow dispersion relations

analyticity (\simeq causality) & Cauchy's theorem:

$$T(s) = \frac{1}{2\pi i} \oint_{\partial \Omega} \frac{T(z)dz}{z-s}$$

analyticity (\simeq causality) & Cauchy's theorem:

$$T(s) = \frac{1}{2\pi i} \oint_{\partial \Omega} \frac{T(z)dz}{z-s}$$

analyticity (\simeq causality) & Cauchy's theorem:

$$T(s) = \frac{1}{2\pi i} \oint_{\partial \Omega} \frac{T(z)dz}{z-s}$$

analyticity (\simeq causality) & Cauchy's theorem:

$$T(s) = \frac{1}{2\pi i} \oint_{\partial \Omega} \frac{T(z)dz}{z-s}$$

 \longrightarrow will be neglected in the following

Meson transition form factors and $(g-2)_{\mu}$

Czerwiński et al., arXiv:1207.6556 [hep-ph]

• leading and next-to-leading hadronic effects in $(g-2)_{\mu}$:

- \longrightarrow hadronic vacuum polarisation: $e^+e^- \rightarrow$ hadrons
- \longrightarrow hadronic light-by-light soon dominant uncertainty

Meson transition form factors and $(g-2)_{\mu}$

Czerwiński et al., arXiv:1207.6556 [hep-ph]

• leading and next-to-leading hadronic effects in $(g-2)_{\mu}$:

- \longrightarrow hadronic vacuum polarisation: $e^+e^- \rightarrow$ hadrons
- \longrightarrow hadronic light-by-light soon dominant uncertainty
- important contribution: pseudoscalar pole terms singly / doubly virtual form factors $F_{P\gamma\gamma^*}(q^2, 0)$ and $F_{P\gamma^*\gamma^*}(q_1^2, q_2^2)$

• isospin decomposition:

$$F_{\pi^0\gamma^*\gamma^*}(q_1^2, q_2^2) = F_{vs}(q_1^2, q_2^2) + F_{vs}(q_2^2, q_1^2)$$
$$F_{\eta\gamma^*\gamma^*}(q_1^2, q_2^2) = F_{vv}(q_1^2, q_2^2) + F_{ss}(q_2^2, q_1^2)$$

• isospin decomposition:

$$F_{\pi^{0}\gamma^{*}\gamma^{*}}(q_{1}^{2}, q_{2}^{2}) = F_{vs}(q_{1}^{2}, q_{2}^{2}) + F_{vs}(q_{2}^{2}, q_{1}^{2})$$
$$F_{\eta\gamma^{*}\gamma^{*}}(q_{1}^{2}, q_{2}^{2}) = F_{vv}(q_{1}^{2}, q_{2}^{2}) + F_{ss}(q_{2}^{2}, q_{1}^{2})$$

• analyse the leading hadronic intermediate states:

Hanhart et al. 2013, Hoferichter et al. 2014

isovector photon: 2 pions

 \propto pion vector form factor

$$\gamma\pi \to \pi\pi \ / \ \eta \to \pi\pi\gamma$$

all determined in terms of pion-pion P-wave phase shift

Х

• isospin decomposition:

$$F_{\pi^{0}\gamma^{*}\gamma^{*}}(q_{1}^{2}, q_{2}^{2}) = F_{vs}(q_{1}^{2}, q_{2}^{2}) + F_{vs}(q_{2}^{2}, q_{1}^{2})$$
$$F_{\eta\gamma^{*}\gamma^{*}}(q_{1}^{2}, q_{2}^{2}) = F_{vv}(q_{1}^{2}, q_{2}^{2}) + F_{ss}(q_{2}^{2}, q_{1}^{2})$$

• analyse the leading hadronic intermediate states:

Hanhart et al. 2013, Hoferichter et al. 2014

▷ isovector photon: 2 pions

 \propto pion vector form factor

$$\gamma\pi \to \pi\pi$$
 / $\eta \to \pi\pi\gamma$

all determined in terms of pion-pion P-wave phase shift

Х

▷ isoscalar photon: 3 pions

isospin decomposition:

$$F_{\pi^{0}\gamma^{*}\gamma^{*}}(q_{1}^{2}, q_{2}^{2}) = F_{vs}(q_{1}^{2}, q_{2}^{2}) + F_{vs}(q_{2}^{2}, q_{1}^{2})$$
$$F_{\eta\gamma^{*}\gamma^{*}}(q_{1}^{2}, q_{2}^{2}) = F_{vv}(q_{1}^{2}, q_{2}^{2}) + F_{ss}(q_{2}^{2}, q_{1}^{2})$$

analyse the leading hadronic intermediate states:

isovector photon: 2 pions

pion vector form factor \propto

$$\gamma\pi \to \pi\pi \ / \ \eta \to \pi\pi\gamma$$

all determined in terms of pion-pion P-wave phase shift

Х

 \triangleright isoscalar photon: 3 pions \longrightarrow dominated by narrow ω, ϕ $\leftrightarrow \omega/\phi$ transition form factors; very small for the η

Testing the Wess–Zumino–Witten chiral anomaly

• controls low-energy processes of odd intrinsic parity

•
$$\pi^0 \operatorname{decay} \pi^0 \to \gamma \gamma$$
: $F_{\pi^0 \gamma \gamma} = \frac{e^2}{4\pi^2 F_-}$

 F_{π} : pion decay constant \longrightarrow measured at 1.5% level PrimEx 2011

Testing the Wess–Zumino–Witten chiral anomaly

- controls low-energy processes of odd intrinsic parity
- $\pi^0 \operatorname{decay} \pi^0 \to \gamma \gamma$: $F_{\pi^0 \gamma \gamma} = \frac{e^2}{4\pi^2 F_{\pi}}$ F_{π} : pion decay constant \longrightarrow measured at 1.5% level PrimEx 2011
- $\gamma \pi \to \pi \pi$ at zero energy: $F_{3\pi} = \frac{e}{4\pi^2 F_{\pi}^3} = (9.78 \pm 0.05) \,\text{GeV}^{-3}$ how well can we test this low-energy theorem?

Testing the Wess–Zumino–Witten chiral anomaly

- controls low-energy processes of odd intrinsic parity
- $\pi^0 \operatorname{decay} \pi^0 \to \gamma \gamma$: $F_{\pi^0 \gamma \gamma} = \frac{e^2}{4\pi^2 F_{\pi}}$ F_{π} : pion decay constant \longrightarrow measured at 1.5% level PrimEx 2011
- $\gamma \pi \to \pi \pi$ at zero energy: $F_{3\pi} = \frac{e}{4\pi^2 F_{\pi}^3} = (9.78 \pm 0.05) \,\text{GeV}^{-3}$ how well can we test this low-energy theorem?

 $\longrightarrow F_{3\pi}$ tested only at 10% level

Giller et al. 2005

Chiral anomaly: Primakoff measurement

- previous analyses based on
 - data in threshold region only
 - ▷ chiral perturbation theory for extraction

Serpukhov 1987

Chiral anomaly: Primakoff measurement

- previous analyses based on
 - data in threshold region only
 - chiral perturbation theory for extraction
- Primakoff measurement of whole spectrum COMPASS, work in progress
- idea: use dispersion relations to exploit all data below 1 GeV for anomaly extraction
- effect of ρ resonance included model-independently via ππ P-wave phase shift Hoferichter, BK, Sakkas 2012

figure courtesy of T. Nagel 2009

Serpukhov 1987

Chiral anomaly: Primakoff measurement

- previous analyses based on
 - b data in threshold region only
 - chiral perturbation theory for extraction

4500

4000

3500

3000

2500

2000

1500

1000

500

0

02

- Primakoff measurement of whole spectrum COMPASS, work in progress
- idea: use dispersion relations to exploit all data below 1 GeV for anomaly extraction
- effect of ρ resonance included model-independently via ππ P-wave phase shift Hoferichter, BK, Sakkas 2012

o meson

Serpukhov 1987

COMPASS 2012

 π^- + Ni \rightarrow π^- + π^0 + Ni

Preliminary

No background substraction

Warm-up: pion form factor from dispersion relations

• just two particles in final state: form factor; from unitarity:

 $\frac{1}{2i}\operatorname{disc} F_{I}(s) = \operatorname{Im} F_{I}(s) = F_{I}(s) \times \theta(s - 4M_{\pi}^{2}) \times \sin \delta_{I}(s) e^{-i\delta_{I}(s)}$

 \longrightarrow final-state theorem: phase of $F_I(s)$ is just $\delta_I(s)$ Watson 1954

Warm-up: pion form factor from dispersion relations

• just two particles in final state: form factor; from unitarity:

 $\frac{1}{2i}\operatorname{disc} F_{I}(s) = \operatorname{Im} F_{I}(s) = F_{I}(s) \times \theta(s - 4M_{\pi}^{2}) \times \sin \delta_{I}(s) e^{-i\delta_{I}(s)}$

 \longrightarrow final-state theorem: phase of $F_I(s)$ is just $\delta_I(s)$ Watson 1954

• solution to this homogeneous integral equation known:

$$F_I(s) = P_I(s)\Omega_I(s) , \quad \Omega_I(s) = \exp\left\{\frac{s}{\pi}\int_{4M_\pi^2}^\infty ds' \frac{\delta_I(s')}{s'(s'-s)}\right\}$$

 $P_I(s)$ polynomial, $\Omega_I(s)$ Omnès function

Omnès 1958

• today: high-accuracy $\pi\pi$ phase shifts available

Ananthanarayan et al. 2001, García-Martín et al. 2011

• constrain $P_I(s)$ using symmetries (normalisation at s = 0 etc.)

Pion vector form factor from dispersion relations

• pion vector form factor clearly non-perturbative: ρ resonance

B. Kubis, π^0 and η Primakoff production – p. 11

- $\gamma \pi \rightarrow \pi \pi$ particularly simple system: odd partial waves \longrightarrow P-wave interactions only (neglecting F- and higher)
- amplitude decomposed into single-variable functions

$$\mathcal{M}(s,t,u) = i\epsilon_{\mu\nu\alpha\beta}n^{\mu}p^{\nu}_{\pi^{+}}p^{\alpha}_{\pi^{-}}p^{\beta}_{\pi^{0}}\mathcal{F}(s,t,u)$$
$$\mathcal{F}(s,t,u) = \mathcal{F}(s) + \mathcal{F}(t) + \mathcal{F}(u)$$

Unitarity relation for $\mathcal{F}(s)$:

disc $\mathcal{F}(s) = 2i \{ \underbrace{\mathcal{F}(s)}_{\mathcal{F}(s)} + \underbrace{\hat{\mathcal{F}}(s)}_{\mathcal{F}(s)} \} \times \theta(s - 4M_{\pi}^2) \times \sin \delta_1^1(s) e^{-i\delta_1^1(s)}$

right-hand cut left-hand cut

Unitarity relation for $\mathcal{F}(s)$:

disc $\mathcal{F}(s) = 2i \{ \underbrace{\mathcal{F}(s)}_{\mathcal{F}} + \underbrace{\hat{\mathcal{F}}(s)}_{\mathcal{F}} \} \times \theta(s - 4M_{\pi}^2) \times \sin \delta_1^1(s) e^{-i\delta_1^1(s)}$

right-hand cut left-hand cut

Unitarity relation for $\mathcal{F}(s)$:

disc
$$\mathcal{F}(s) = 2i\{\mathcal{F}(s)$$

right-hand cut
 $\left[\text{disc} \left[\sqrt{\left(\int_{-\infty}^{\infty} \int_$

right-hand cut only —> Omnès problem

$$\mathcal{F}(s) = P(s) \Omega(s) , \qquad \Omega(s) = \exp\left\{\frac{s}{\pi} \int_{4M_{\pi}^2}^{\infty} \frac{ds'}{s'} \frac{\delta_1^1(s')}{s'-s}\right\}$$

`\ / `\

 \longrightarrow amplitude given in terms of pion vector form factor

$$\operatorname{disc} \mathcal{F}(s) = 2i \left\{ \underbrace{\mathcal{F}(s)}_{\text{right-hand cut}} + \underbrace{\hat{\mathcal{F}}(s)}_{\text{left-hand cut}} \right\} \times \theta(s - 4M_{\pi}^2) \times \sin \, \delta_1^1(s) \, e^{-i\delta_1^1(s)}$$

• inhomogeneities $\hat{\mathcal{F}}(s)$: angular averages over the $\mathcal{F}(t)$, $\mathcal{F}(u)$

$$\mathcal{F}(s) = \Omega(s) \left\{ \frac{C_2^{(1)}}{3} \left(1 - \dot{\Omega}(0)s \right) + \frac{C_2^{(2)}}{3}s + \frac{s^2}{\pi} \int_{4M_\pi^2}^{\infty} \frac{ds'}{s'^2} \frac{\sin \delta_1^1(s')\hat{\mathcal{F}}(s')}{|\Omega(s')|(s'-s)} \right\}$$
$$\hat{\mathcal{F}}(s) = \frac{3}{2} \int_{-1}^{1} dz \left(1 - z^2 \right) \mathcal{F}(t(s, z))$$
$$\mathcal{F}(s) = \sqrt{2} + \sqrt{2} +$$
Dispersion relations for 3 pions

$$\operatorname{disc} \mathcal{F}(s) = 2i \left\{ \underbrace{\mathcal{F}(s)}_{\text{right-hand cut}} + \underbrace{\hat{\mathcal{F}}(s)}_{\text{left-hand cut}} \right\} \times \theta(s - 4M_{\pi}^2) \times \sin \, \delta_1^1(s) \, e^{-i\delta_1^1(s)}$$

• inhomogeneities $\hat{\mathcal{F}}(s)$: angular averages over the $\mathcal{F}(t)$, $\mathcal{F}(u)$

$$\mathcal{F}(s) = \Omega(s) \left\{ \frac{C_2^{(1)}}{3} \left(1 - \dot{\Omega}(0)s \right) + \frac{C_2^{(2)}}{3}s + \frac{s^2}{\pi} \int_{4M_\pi^2}^\infty \frac{ds'}{s'^2} \frac{\sin \delta_1^1(s')\hat{\mathcal{F}}(s')}{|\Omega(s')|(s'-s)} \right\}$$
$$\hat{\mathcal{F}}(s) = \frac{3}{2} \int_{-1}^1 dz \left(1 - z^2 \right) \mathcal{F}\left(t(s, z) \right)$$

 admits crossed-channel scattering between s-, t-, and u-channel (left-hand cuts)

Omnès solution for $\gamma\pi ightarrow \pi\pi$

$$\mathcal{F}(s) = \Omega(s) \left\{ \frac{C_2^{(1)}}{3} \left(1 - \dot{\Omega}(0)s \right) + \frac{C_2^{(2)}}{3}s + \frac{s^2}{\pi} \int_{4M_\pi^2}^\infty \frac{ds'}{s'^2} \frac{\sin \delta_1^1(s')\hat{\mathcal{F}}(s')}{|\Omega(s')|(s'-s)} \right\}$$

• important observation: $\mathcal{F}(s)$ linear in $C_2^{(i)}$

$$\mathcal{F}(s) = C_2^{(1)} \mathcal{F}^{(1)}(s) + C_2^{(2)} \mathcal{F}^{(2)}(s)$$

 \longrightarrow basis functions $\mathcal{F}^{(i)}(s)$ calculated independently of $C_2^{(i)}$

Omnès solution for $\gamma\pi ightarrow \pi\pi$

$$\mathcal{F}(s) = \Omega(s) \left\{ \frac{C_2^{(1)}}{3} \left(1 - \dot{\Omega}(0)s \right) + \frac{C_2^{(2)}}{3}s + \frac{s^2}{\pi} \int_{4M_\pi^2}^\infty \frac{ds'}{s'^2} \frac{\sin \delta_1^1(s')\hat{\mathcal{F}}(s')}{|\Omega(s')|(s'-s)} \right\}$$

• important observation: $\mathcal{F}(s)$ linear in $C_2^{(i)}$

$$\mathcal{F}(s) = C_2^{(1)} \mathcal{F}^{(1)}(s) + C_2^{(2)} \mathcal{F}^{(2)}(s)$$

 \longrightarrow basis functions $\mathcal{F}^{(i)}(s)$ calculated independently of $C_2^{(i)}$

- representation of cross section in terms of two parameters
 - \longrightarrow fit to data, extract

$$F_{3\pi} \simeq C_2 = C_2^{(1)} + C_2^{(2)} M_\pi^2$$

 $\longrightarrow \sigma \propto (C_2)^2$ also in ρ region

$\gamma\pi ightarrow \pi\pi$: plans & extensions

• $\gamma \pi \rightarrow \pi \pi$ on the lattice

study quark-mass extrapolation

Niehus, MSc thesis 2017

$\gamma\pi ightarrow \pi\pi$: plans & extensions

• $\gamma \pi \rightarrow \pi \pi$ on the lattice

Briceño et al. (HadSpec Coll.) 2015

study quark-mass extrapolation

Niehus, MSc thesis 2017

• only odd partial waves allowed \rightarrow estimate *F*-wave? $\rho_3(1690)$? comparison to $\rho'(1450)$, $\rho''(1700)$ effects? Zanke, BSc thesis 2017

The simplest of all resonances: ρ (770)

- can we understand what's there "below the peak"?
- how is the $\rho(770)$ line shape modified in different reactions?

Pion vector form factor vs. Omnès representation

• divide $\tau^- \rightarrow \pi^- \pi^0 \nu_\tau$ form factor by Omnès function:

Hanhart et al. 2013

- \longrightarrow linear below 1 GeV: $F_{\pi}^{V}(s) \approx (1 + 0.1 \, \text{GeV}^{-2}s) \Omega(s)$
- \longrightarrow above: inelastic resonances ρ' , ρ'' ...

Final-state universality: $\eta,~\eta' ightarrow \pi^+\pi^-\gamma$

η^(') → π⁺π⁻γ driven by the chiral anomaly, π⁺π⁻ in P-wave → final-state interactions the same as for vector form factor
ansatz: 𝔅^{η^(')}_{ππγ} = A × P(t) × Ω(t), P(t) = 1 + α^(')t, t = M²_{ππ}

Final-state universality: $\eta,~\eta' ightarrow \pi^+\pi^-\gamma$

- η^(') → π⁺π⁻γ driven by the chiral anomaly, π⁺π⁻ in P-wave → final-state interactions the same as for vector form factor
 ansatz: 𝓕^{η^(')}_{ππγ} = A × P(t) × Ω(t), P(t) = 1 + α^(')t, t = M²_{ππ}
- divide data by pion form factor $\longrightarrow P(t)$ Stollenwerk et al. 2012

Anomalous decay $\eta ightarrow \pi^+\pi^-\gamma$

• $\alpha_{\text{KLOE}} = (1.52 \pm 0.06) \,\text{GeV}^{-2}$ large

 \longrightarrow implausible to explain through ρ' , ρ'' ...

- for large t, expect $P(t) \rightarrow$ const. rather
- important input for
 - $\eta \to \gamma^* \gamma$ transition form factor:
 - → dispersion integral covers larger energy range

Hanhart et al. 2013

Anomalous decay $\eta ightarrow \pi^+\pi^-\gamma$

• $\alpha_{\text{KLOE}} = (1.52 \pm 0.06) \,\text{GeV}^{-2}$ large

 \longrightarrow implausible to explain through ρ' , ρ'' ...

- for large t, expect $P(t) \rightarrow$ const. rather
- important input for

 $\eta \to \gamma^* \gamma$ transition form factor:

dispersion integral covers
 larger energy range

Hanhart et al. 2013

Intriguing observation:

• naive continuation of $\mathcal{F}^{\eta}_{\pi\pi\gamma} = A(1+\alpha t)\Omega(t)$ has zero at $t = -1/\alpha \approx -0.66 \,\mathrm{GeV}^2$

 \longrightarrow test this in crossed process $\gamma \pi^- \rightarrow \pi^- \eta$

 \longrightarrow "left-hand cuts" in $\pi\eta$ system?

BK, Plenter 2015

Primakoff reaction $\gamma\pi o \pi\eta$

- can be measured in Primakoff reaction
- S-wave forbidden
 P-wave exotic: J^{PC} = 1⁻⁺
 D-wave a₂(1320) first resonance

Primakoff reaction $\gamma\pi ightarrow \pi\eta$

- can be measured in Primakoff reaction
- S-wave forbidden
 P-wave exotic: J^{PC} = 1⁻⁺
 D-wave a₂(1320) first resonance
- include a₂ as left-hand cut in decay couplings fixed from a₂ → πη, πγ

- compatible with decay data?
- ▷ first s-channel resonance
 - \longrightarrow breakdown scale for *t*-channel dominance

COMPASS

▷ does the amplitude zero survive?

Formalism including left-hand cuts

- a_2 + rescattering essential to preserve Watson's theorem
- formally:

$$\mathcal{F}^{\eta}_{\pi\pi\gamma}(s,t,u) = \mathcal{F}(t) + \mathcal{G}_{a_2}(s,t,u) + \mathcal{G}_{a_2}(u,t,s)$$
$$\mathcal{F}(t) = \Omega(t) \left\{ A(1+\alpha t) + \frac{t^2}{\pi} \int_{4M_{\pi}^2}^{\infty} \frac{dx}{x^2} \frac{\sin\delta(x)\hat{\mathcal{G}}(x)}{|\Omega(x)|(x-t)} \right\}$$

 $\hat{\mathcal{G}}$: t-channel P-wave projection of a_2 exchange graphs

• re-fit subtraction constants A, α

 $\eta,\,\eta' o\pi^+\pi^-\gamma$ with a_2

 $\eta,\,\eta' o\pi^+\pi^-\gamma$ with a_2

$$\eta,\,\eta' o\pi^+\pi^-\gamma$$
 with a_2

• equally good—why care? sum rule for $\eta \rightarrow \gamma^* \gamma$ transition form factor slope reduced by 7 - 8% cf. Hanhart et al. 2013 $\eta,\,\eta' o\pi^+\pi^-\gamma$ with a_2

• equally good—why care? sum rule for $\eta \rightarrow \gamma^* \gamma$ transition form factor slope reduced by 7 - 8% cf. Hanhart et al. 2013 $\eta,\,\eta' o\pi^+\pi^-\gamma$ with a_2

• equally good—why care? sum rule for $\eta \rightarrow \gamma^* \gamma$ transition form factor slope reduced by 7 - 8% cf. Hanhart et al. 2013

• $\alpha \approx \alpha'$ (large- N_c) better fulfilled including a_2

BK, Plenter 2015

Total cross section $\gamma\pi o \pi\eta$

blue: *t*-channel dynamics / " ρ " only red: full amplitude

- *t*-channel dynamics dominate below $\sqrt{s} \approx 1 \,\mathrm{GeV}$
- uncertainty bands: $\Gamma(\eta \to \pi^+ \pi^- \gamma)$, α , a_2 couplings BK, Plenter 2015

Differential cross sections $\gamma\pi o \pi\eta$

• amplitude zero visible in differential cross sections:

Differential cross sections $\gamma\pi o \pi\eta$

amplitude zero visible in differential cross sections:

Summary / Outlook

Dispersion relations for light-meson processes

- based on unitarity, analyticity, crossing symmetry
- extends range of applicability (at least) to full elastic regime
- matching to ChPT where it works best

 $\gamma\pi^-
ightarrow \pi^-\pi^0$

• improved extraction of $F_{3\pi}$ from COMPASS data up to 1 GeV

 $\gamma\pi^- o \pi^-\eta$

- cross section & forward-backward asymmetry below $a_2(1320)$: extends $\eta \to \pi^+ \pi^- \gamma$ amplitude
- first COMPASS feasibility studies Altenbach, Diploma thesis 2016

Impact:

- π^0 and η transition form factors: \longrightarrow hadron physics in $(g-2)_{\mu}$
- study resonance line shapes affected by crossed-channel effects

Fit to $e^+e^- ightarrow 3\pi$ data

Hoferichter, BK, Leupold, Niecknig, Schneider 2014

- one subtraction/normalisation at $q^2 = 0$ fixed by $\gamma \rightarrow 3\pi$
- fitted: ω , ϕ residues, linear subtraction β

Comparison to $e^+e^-
ightarrow \pi^0\gamma$ data

Hoferichter, BK, Leupold, Niecknig, Schneider 2014

- "prediction"—no further parameters adjusted
- data very well reproduced

Prediction spacelike form factor

Transition form factor $\eta ightarrow \gamma^* \gamma$

Transition form factor $\eta ightarrow \gamma^* \gamma$

Hanhart et al. 2013

 \rightarrow huge statistical advantage of using hadronic input for $\eta \rightarrow \pi^+\pi^-\gamma$ over direct measurement of $\eta \rightarrow e^+e^-\gamma$ (rate suppressed by α^2_{QED})

figure courtesy of C. Hanhart data: NA60 2011, A2 2014

New data on $\eta'
ightarrow \pi^+\pi^-\gamma$

New data on $\eta' ightarrow \pi^+\pi^-\gamma$

Prediction for η' transition form factor

- isovector: combine high-precision data on $\eta' \rightarrow \pi^+ \pi^- \gamma$ and $e^+ e^- \rightarrow \pi^+ \pi^-$
- isoscalar: VMD, couplings fixed from

 $\eta^\prime \rightarrow \omega \gamma \text{ and } \phi \rightarrow \eta^\prime \gamma$

Prediction for η' transition form factor

- isovector: combine high-precision data on $\eta' \rightarrow \pi^+ \pi^- \gamma$ and $e^+ e^- \rightarrow \pi^+ \pi^-$
- isoscalar: VMD, couplings fixed from

$$\eta^\prime \rightarrow \omega \gamma \text{ and } \phi \rightarrow \eta^\prime \gamma$$

 π

What are left-hand cuts?

Example: pion-pion scattering

• right-hand cut due to unitarity: $s \ge 4M_{\pi}^2$

What are left-hand cuts?

Example: pion-pion scattering

- right-hand cut due to unitarity: $s \ge 4M_{\pi}^2$
- crossing symmetry: cuts also for $t, u \ge 4M_{\pi}^2$

What are left-hand cuts?

Example: pion-pion scattering

- crossing symmetry: cuts also for $t, u \ge 4M_{\pi}^2$
- partial-wave projection: $T(s,t) = 32\pi \sum_{i} T_i(s) P_i(\cos \theta)$

$$t(s,\cos\theta) = \frac{1-\cos\theta}{2}(4M_{\pi}^2 - s)$$

 \longrightarrow cut for $t \ge 4M_{\pi}^2$ becomes cut for $s \le 0$ in partial wave
$\pi\pi$ scattering constrained by analyticity and unitarity

Roy equations = coupled system of partial-wave dispersion relations + crossing symmetry + unitarity

• twice-subtracted fixed-*t* dispersion relation:

$$T(s,t) = c(t) + \frac{1}{\pi} \int_{4M_{\pi}^2}^{\infty} ds' \left\{ \frac{s^2}{s'^2(s'-s)} + \frac{u^2}{s'^2(s'-u)} \right\} \operatorname{Im} T(s',t)$$

• subtraction function c(t) determined from crossing symmetry

$\pi\pi$ scattering constrained by analyticity and unitarity

Roy equations = coupled system of partial-wave dispersion relations + crossing symmetry + unitarity

• twice-subtracted fixed-*t* dispersion relation:

$$T(s,t) = c(t) + \frac{1}{\pi} \int_{4M_{\pi}^2}^{\infty} ds' \left\{ \frac{s^2}{s'^2(s'-s)} + \frac{u^2}{s'^2(s'-u)} \right\} \operatorname{Im}T(s',t)$$

- subtraction function c(t) determined from crossing symmetry
- project onto partial waves $t_J^I(s)$ (angular momentum J, isospin I) \longrightarrow coupled system of partial-wave integral equations

$$t_{J}^{I}(s) = k_{J}^{I}(s) + \sum_{I'=0}^{2} \sum_{J'=0}^{\infty} \int_{4M_{\pi}^{2}}^{\infty} ds' K_{JJ'}^{II'}(s,s') \operatorname{Im} t_{J'}^{I'}(s')$$

Roy 1971

- subtraction polynomial $k_J^I(s)$: $\pi\pi$ scattering lengths can be matched to chiral perturbation theory Colangelo et al. 2001
- kernel functions $K_{JJ'}^{II'}(s,s')$ known analytically

$\pi\pi$ scattering constrained by analyticity and unitarity

- elastic unitarity —> coupled integral equations for phase shifts
- modern precision analyses:
 - $\triangleright \pi\pi$ scattering Ananthanarayan et al. 2001, García-Martín et al. 2011
 - $\triangleright \pi K$ scattering

Büttiker et al. 2004

• example: $\pi\pi I = 0$ S-wave phase shift & inelasticity

García-Martín et al. 2011

• strong constraints on data from analyticity and unitarity!