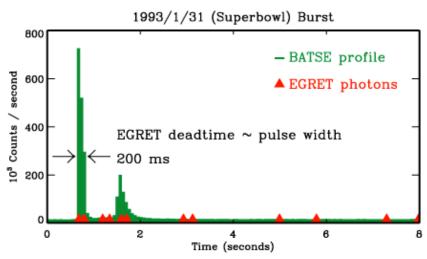
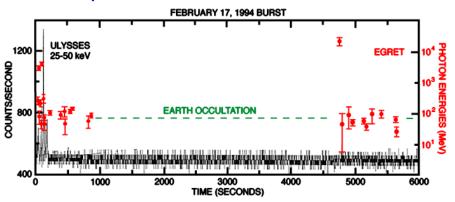
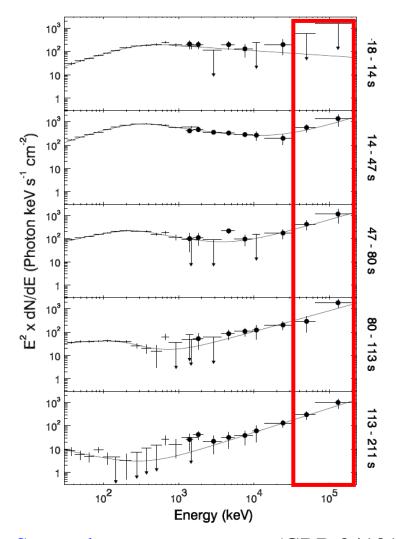


GRB with the Fermi Large Area Telescope

F.Longo University of Trieste and INFN


On behalf of the Fermi/LAT collaboration


The EGRET heritage on GRBs



Prompt Emission (GRB 930131)

Delayed Emission (GRB 940217)

Spectral extra components (GRB 941017)

The Fermi Observatory

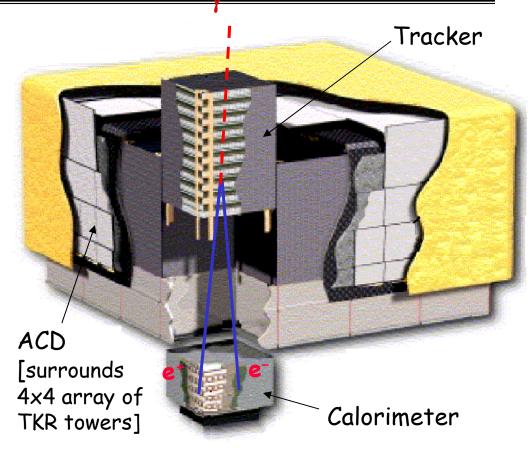
- Large Area Telescope (LAT)
 - Large field of view (2.4 sr @ 1 GeV)
 - Sees the entire sky every 3 hours
 - 20 MeV to >300 GeV
 - Onboard and ground burst triggers
 - Localization, spectroscopy

Atwood et al. 2009, ApJ 697, 1071

- Gamma-ray Burst Monitor (GBM)
 - Sees the entire unocculted sky (>9.5 sr)
 - 8 keV to 40 MeV
 - 12 Nal detectors (8 keV to 1 MeV)
 - Onboard trigger, onboard and ground localizations, spectroscopy
 - 2 BGO detectors (150 keV to 40 MeV)
 - Spectroscopy

Meegan et al. 2009, ApJ 702, 791

Overview of LAT

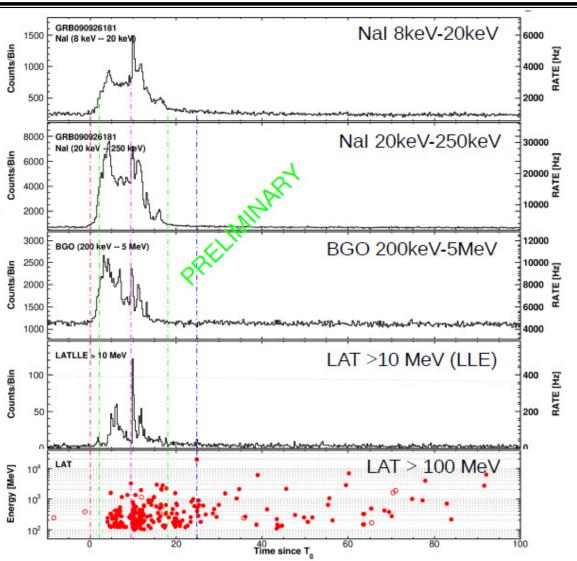

- Precision Si-strip Tracker (TKR)

 18 XY tracking planes. Single-sided silicon strip detectors (228 μm pitch)

 Measure the photon direction; gamma ID.
- Hodoscopic Csl Calorimeter(CAL)
 Array of 1536 Csl(Tl) crystals in 8
 layers. Measure the photon energy;
 image the shower.
- Segmented Anticoincidence Detector

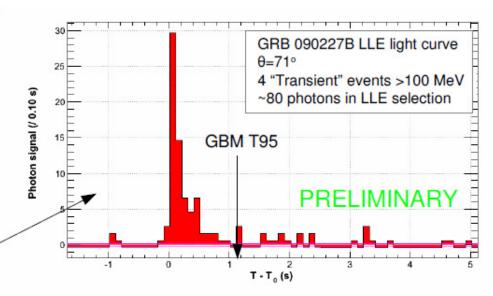
 (ACD) 89 plastic scintillator tiles.

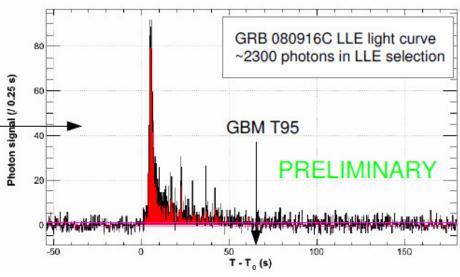
 Reject background of charged cosmic rays; segmentation removes self-veto effects at high energy.
- <u>Electronics System</u> Includes flexible, robust hardware trigger and software filters.


Systems work together to identify and measure the flux of cosmic gamma rays with energy 20 MeV - >300 GeV.

A "typical" bright GRB in Fermi

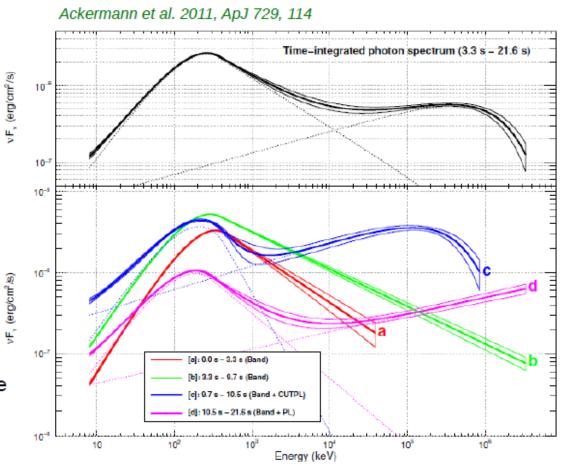
- Ackerman+11: correlated variability in various bands, with a sharp spike at T₀+10 s
 - All energy ranges synchronized (<50 ms)
 - Low and high energies are co-located or even causally correlated
- LAT >100 MeV emission is delayed (~4 s)
 - Delay > spike widths
- LAT >100 MeV emission is temporally extended, well after the GBM prompt phase
 - 19.6 GeV photon detected at T₁+24.8 s





The LAT Low Energy (LLE) event class germe

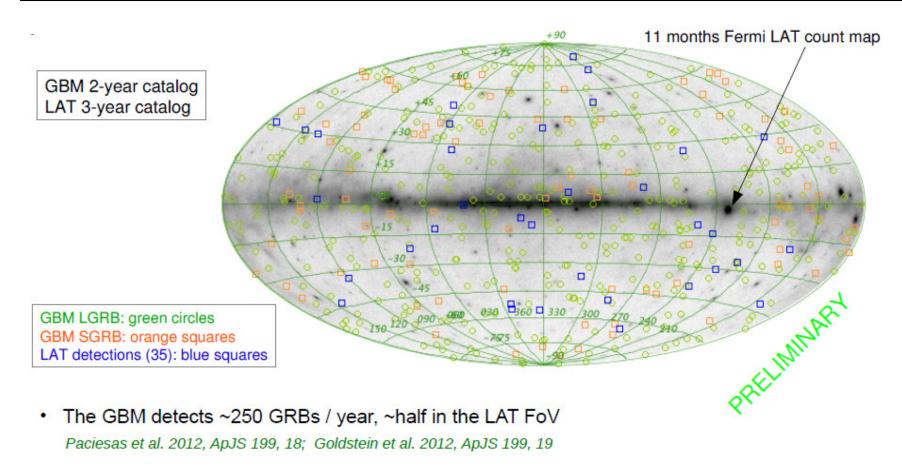
- Most GRBs are detected using the standard event selection (Pass6_V3 "Transient") and analysis technique (unbinned maximum likelihood >100 MeV)
 - Current "default" is Pass7.
 "Transient" selection for < 100 s.
 "Source" selection for > 100 s
- Some other bursts are too weak, too soft, or at a too high off-axis angle to be significantly detected
- We introduced the LLE event class
 - Relaxed selection criteria → higher background, significantly higher effective area in the 10-100 MeV range and at larger off-axis angles
 - Worse PSF than transient class (no localization possible)



A "typical" bright GRB in Fermi

- Fluence = 2.2 x 10⁴ erg cm² (10 keV - 10 GeV)
- E_{iso} = 2.2 x 10⁵⁴ erg
- Extra component (power law)
 - Starts delayed (~9 s)
 - Persists at longer times
 - Dominates > 10 MeV
- Spectral cutoff
 - Significant in bin c, marginally in bin d
 - Shape not constrained
- First direct measurement of the jet Lorentz factor: Γ ~ 200-700
 - If cutoff due to $\gamma\gamma$ absorption
 - Model dependent

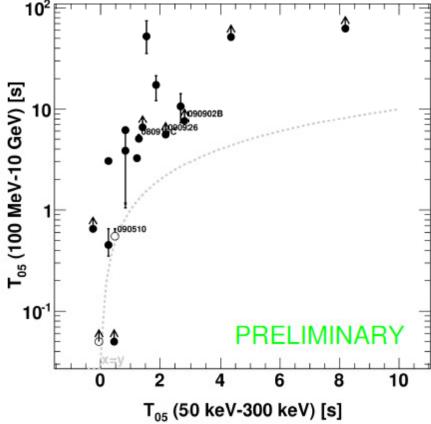
The Fermi/LAT GRB catalog



- Systematic study of GRB properties at high energies (>10 MeV)
- Covers a 3-year period starting from August 2008, including:
 - Tabulated GRB parameters
 - Start / end times, duration, fluence, energetics, average and peak fluxes, time of the peak flux, temporal decay slope, spectral evolution
 - Spectral analysis results (from GBM+LAT joint fits)
 - Discussions on the unique properties of individual bursts (presence of extra spectral components and of high-energy spectral cutoffs)
 - Details on the analysis: methodology, tools, methods and caveats
- Paper submitted to ApJS, arXiv:1303.2908

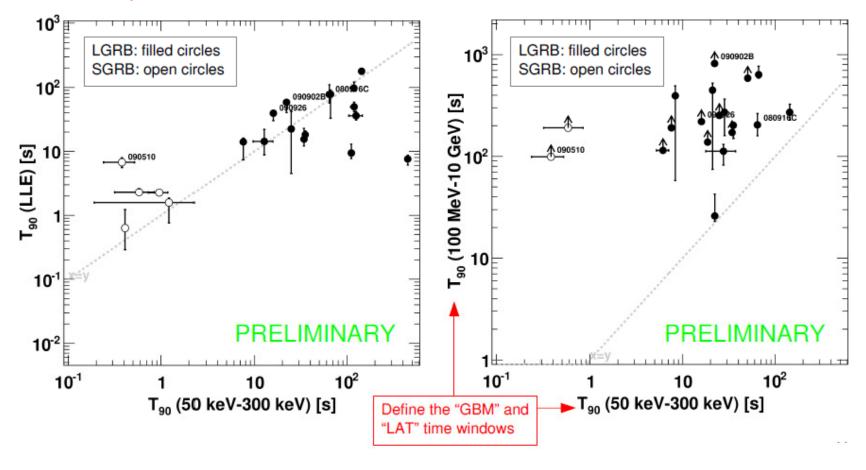
The GRB catalog

- The LAT detected 35 GRBs in 3 years (30 long, 5 short), including 7 "LLE-only" GRBs
 - Bright LAT bursts with good localizations are all followed-up by Swift
 - 10 redshift measurements, from z=0.74 (GRB 090328) to z=4.35 (GRB 080916C)
 - 4 joint BAT-GBM-LAT detections: GRBs 090510, 100728A, 110625A, 110731A



Delayed onset of >100 MeV photons

- GBM T₀₅ vs. LLE T₀₅: onset of LLE emission is compatible with GBM
- GBM T₀₅ vs. LAT T₀₅: LAT >100 MeV emission is systematically delayed

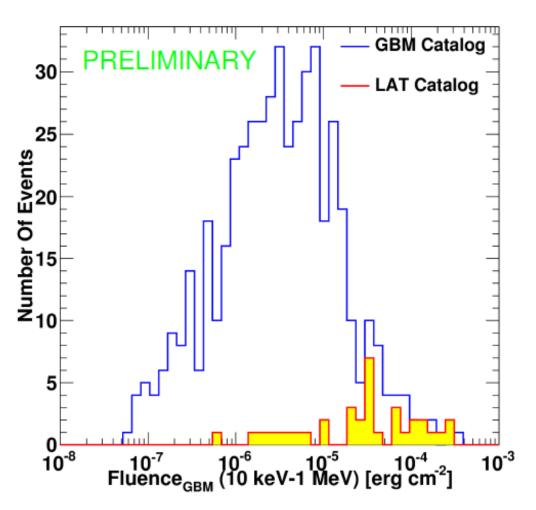


Temporally extended emission of > 100 MeV component

 GBM T₉₀ vs. LLE T₉₀: duration of LLE emission is compatible with GBM GBM T₉₀ vs. LAT T₉₀: LAT >100 MeV emission lasts systematically longer

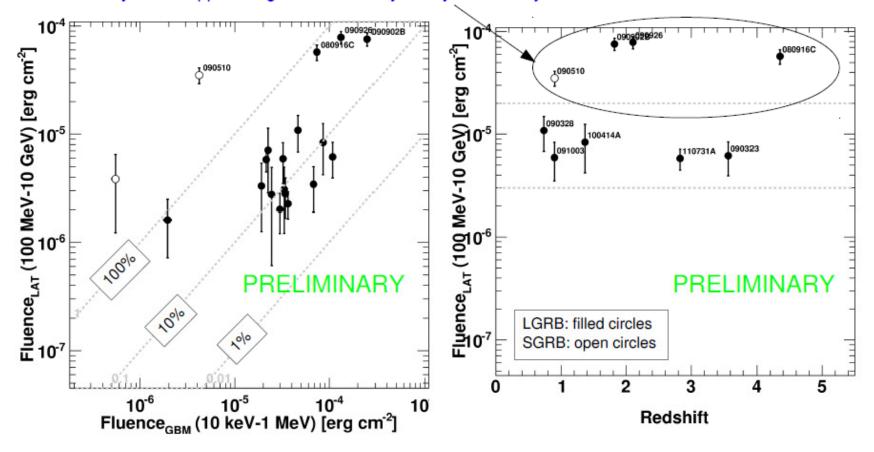
Different components? Caveat: different sensitivities and S/N ratios between GBM, LLE and LAT >100 MeV

Band model "crisis"

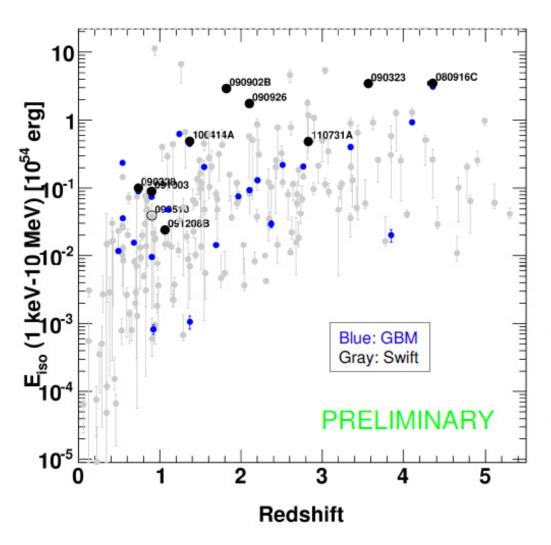


	Fluence 10 keV - 10 GeV (10 ⁻⁷ erg/cm ²)	Best model
GBM+LAT joint spectral fits during "GE time window Photospheric emission component (seen in a couple of <i>Fermi</i> bursts so fa not included in the catalog spectral fits	(10 ⁻⁷ erg/cm ²) 4665 -76 +78 4058 -24 4058 +25 2225 -48 1795 +41 1528 -44 1528 +44 27	Band with exponential cutoff Comptonized + Power law Band + Power law with exponential cutoff Band + Power law Band Comptonized Comptonized + Power law
 The (phenomenological) Band function does not capture all features in the data Note: extra PL detected in GRB 08091 spectrum (better bkg estimation and response matrices than in the 1st pape Broad-band physical models are needed. 	ta	Logarithmic parabola Logarithmic parabola Band Band Band Band Band Band Band Ban
	379 + 20 $360 + 18$	Band + Power law Band + Power law

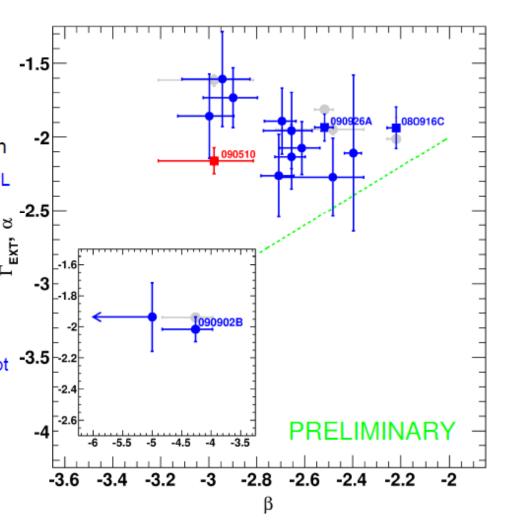
< 1 MeV of LAT GRB


- Fluence in GBM energy range and "GBM" time window
 - LAT bursts vs. entire sample in GBM spectral catalog (Goldstein et al. 2012)
- Not surprisingly, LAT bursts are among the brightest GBM bursts
 - Selection effects (autonomous repointings) are possible though

GBM and **LAT** fluence

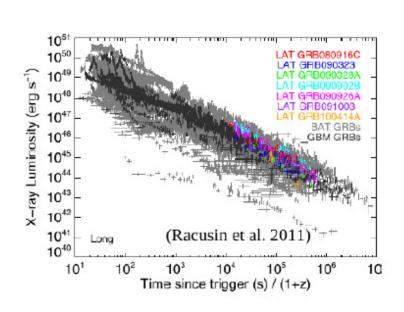

- . GBM and LAT fluences computed in "GBM" and "LAT" time windows, respectively
 - Short GRBs (LAT fluence > GBM fluence) are harder than long GRBs (LAT/GBM fluence ~10%).
- . A hyper-energetic class of long bursts? GRBs 080916C, 090902B, 090926A are exceptionally bright
 - They do not appear bright because they are systematically closer to us

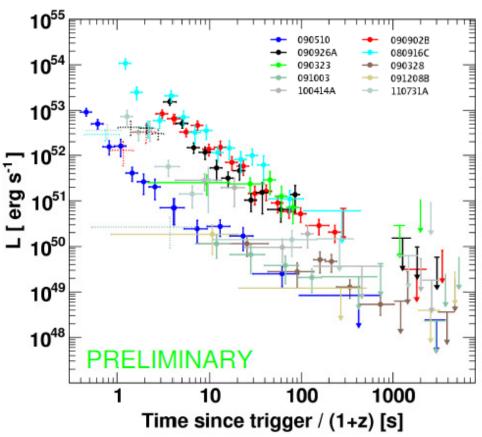
Energetics


- E_{iso} (1 keV 10 MeV) in "GBM" time window vs. redshift
 - LAT bursts vs. GBM (Goldstein et al. 2012) and Swift (Butler et al. 2007) samples
- LAT bursts are among the most energetic bursts
 - Intrinsically and observationally
- GRB 090510 is also one of the most energetic short bursts
- No particular trend in redshift (small sample)

Extended and Prompt Spectra

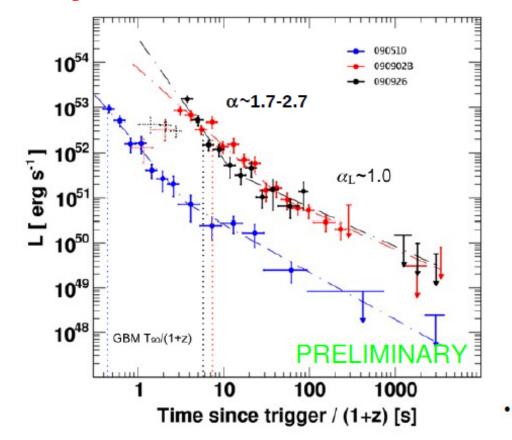
- β = β_{BAND} here: spectral index of Band function in the prompt phase
- Γ_{EXT} : spectral index of extended emission
 - α (grey points): spectral index of extra PL from GBM-LAT joint fit in the prompt phase
- Prompt and extended phase spectra not correlated
 - Stronger spectral variability in the prompt phase

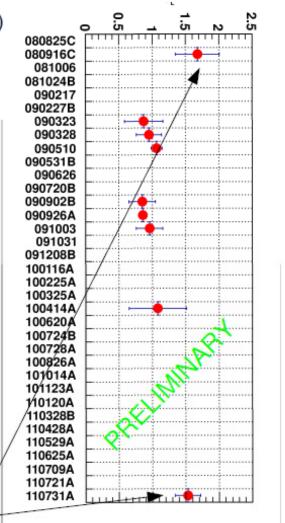




Afterglow of LAT GRB

- Photon spectral index is constant and typically averages around $\Gamma_{\rm EXT} \sim$ -2 (previous slide)
- Rest-frame luminosity (100 MeV 10 GeV) in the afterglow phase: $L(E,t) \sim t^{-\alpha}E^{-\beta}$ β =- Γ_{EXT} -1=1, α =1 for an adiabatic fireball in a constant density environment (10/7 if radiative)





Decay of High energy flux

- Light curves fitted with a simple or a broken power law (BPL)
- BPL significant in 3 cases (chance probability < 10⁻³)
 - Transition between prompt- and afterglow-dominated phases?
- α_i ~ 1 at late times → adiabatic fireball

2 outliers: break not detected? (Both have the shortest detected emission in the rest frame)

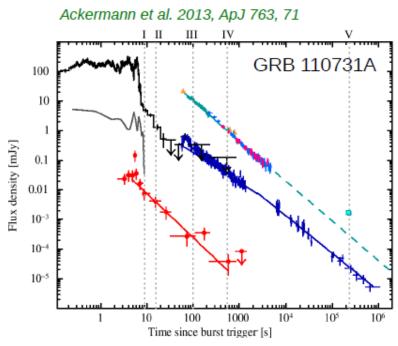
Swift and Fermi GRB

LAT @ 100 MeV (x 100)

BAT @ 25 keV (x 25)

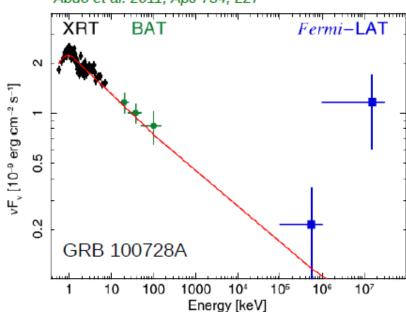
GBM @ 10 keV

+ XRT @ 1 keV


UVOT White MOA I

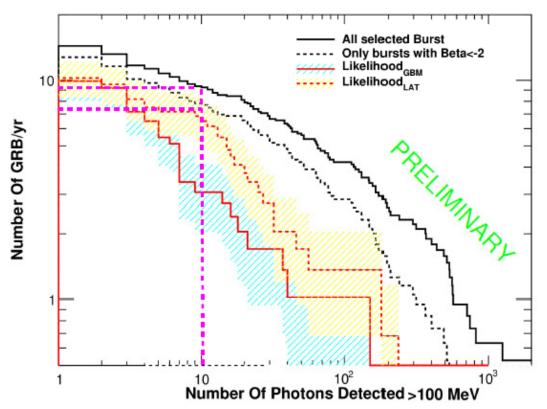
UVOT v

MOA V


GROND r'

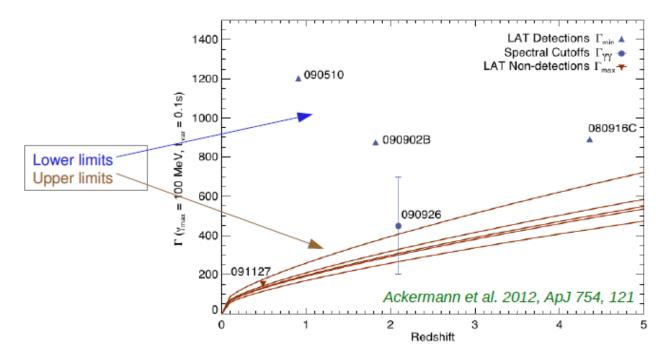
- GRB 100728A was detected during X-ray flaring activity only
 - Spectrum compatible with same PL from X rays to gamma rays, modeled with internal shocks

- GRB 110731A long-lived GeV emission from forward shock
 - Onset time <T₀+8 s (possible contamination from IS)
 - Γ~500 compatible with the value derived from the cutoff seen in the prompt emission spectrum (P~3x10-4)



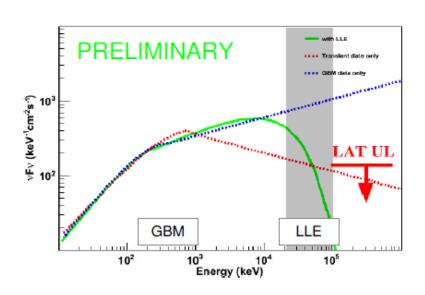
GRB rate at High Energy

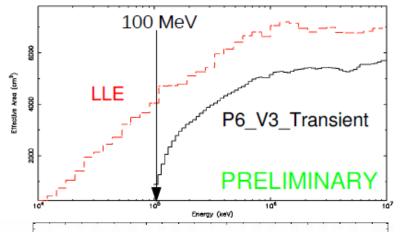
- Pre-launch estimates (Band et al. 2009):
 - 9.3 GRBs expected / year >100 MeV with >10 photons
- Number of "predicted" photons from likelihood fit ("GBM" and "LAT" time windows)
 - 6.3 GRBs observed / year >100 MeV with >10 photons


- Fewer GRBs than anticipated
 - Although both analyses have their own systematic uncertainties
- Extra PL components must be rare
- Is the high-energy emission suppressed?
 - Like for GRB 090926A

Spectral cutoff and pair attenuation

- 3 of the 4 brightest LAT bursts show an extra PL component with no attenuation \rightarrow high $\Gamma_{\min} \sim 1000$
- 6 GBM bright bursts not detected by the LAT show some form spectral softening at tens of MeV
 → Γ_{max}~150-650 assuming 100 ms variability and 1<z<5 (we only know the redshift for GRB 091127)


- Target photon field for $\gamma\gamma$ absorption assumed uniform, isotropic and time-independent
 - Error bar for GRB 090926A accounts for different models
 - Granot 2008, Hascoët & Daigne 2011 give significantly (~3 times) lower Γ values



Spectral cutoffs at LE?

1500

8 keV - 1 MeV

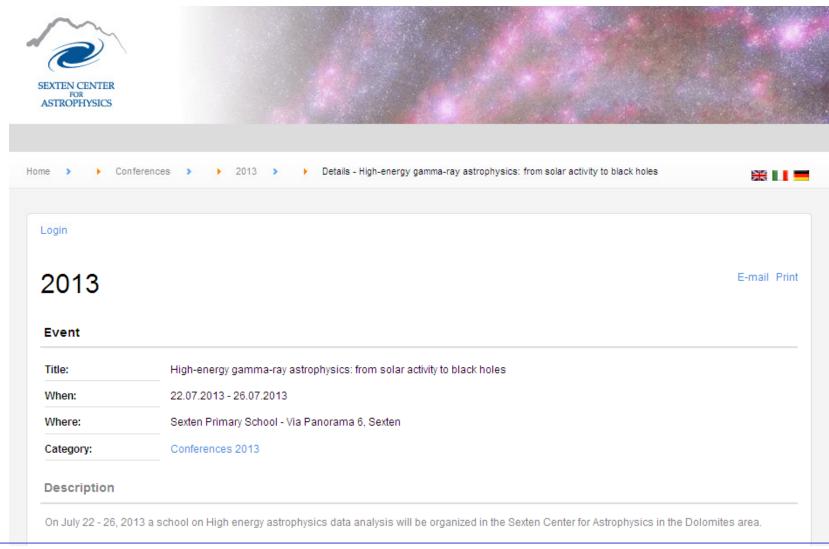
Nal

Standard LAT "Transient" selection runs out of effective area below 100 MeV

 The LLE event selection provides plenty of statistics to probe GRB spectral cutoffs in the 10-100 MeV energy range

http://heasarc.gsfc.nasa.gov/W3Browse/fermi/fermille.html

Conclusions



- Interesting patterns and emergent groups
 - LAT >100 MeV emission is delayed & temporally extended w.r.t. the emission seen in the GBM
 - Short & long GRBs seem to have similar HE properties short GRBs may be harder
 - LAT bursts are fluent, bright & energetic
 - Hint for a class of hyper-energetic GRBs → needs more observations
 - The distribution of GRB jet Lorentz factors might be broad → needs better spectral coverage in the 10-100 MeV range (LLE, Pass 8)
- Prompt emission phase
 - Band model crisis → need detailed physical models
 - Origin of the delayed onset of the LAT >100 MeV emission?
 - Origin of the high-energy emission? From internal and/or external shocks? Leptonic and/or hadronic?
 - Transition from prompt emission phase to early afterglow: how does the extra PL component relate to the long-lived GeV emission?
- Long-lived GeV emission
 - Decays as t⁻¹ at late times, consistent with the canonical afterglow model (adiabatic fireball)
 - Afterglow broad-band spectra of e.g. GRB110731A compatible with FS emission

HE Gamma-ray Data Analysis School

http://www.sexten-cfa.eu/en/conferences/2013/details/27-high-energy-gamma-ray-astrophysics-from-solar-activity-to-black-holes