Latest results from NEMO-3 and status of SuperNEMO

Alberto Remoto

remoto@in2p3.fr

Laboratoire d'Annecy-le-vieux de Physique des Particules

On behalf of the NEMO-3/SuperNEMO collaboration

upernemo

collaboration

NEMO-3

ββ decay experiment combining tracker and calorimetric measurement

Зm

Located at the Modane underground laboratory (~4800 m.w.e.)

10 kg of different $\beta\beta$ isotopes

Taking data from February 2003 to January 2011

Full reconstruction of 2e⁻ kinematics: unique! Excellent background rejection

Equivalent to best calorimetric experiment

NEMO-3: the detector

The detector:

- Central ββ source plane
- Wire drift chamber in Geiger mode
- Plastic scintillator calorimeter coupled with low radioactivity PMTs
- Gamma & Neutron shield

The $\beta\beta$ source:

- 7 different isotopes: Mainly ¹⁰⁰Mo (7 kg) & ⁸²Se (1 kg)
- Cu & ^{Nat}Te blank foils: Cross-check background measurements

NEMO-3: energy calibration

Radioactive sources:

- ²⁰⁷Bi: 482 keV and 976 keV conversion electron
- ${}^{90}\text{Sr} {}^{90}\text{Y}$: β -decay end point $Q_{\beta} = 2280 \text{ keV}$
- ²⁰⁷Bi: 1682 keV conversion electron to test energy scale: 99% PMTs Data/MC < 0.2%

Laser inter-calibration system:

- Gain and time survey twice a day PMTs linearity < 1% for E < 4 MeV
- 82% of PMTs stable < 5% over the whole data taking

NEMO-3: backgrounds

3447

E SUM

1.14 MeV

FILE betabetaz3447

External background.

- Radio-impurities in surrounding material, γ from (n,γ)
- µ bremsstrahlung

Measured through $e^- + \sqrt[7^{10}{2}$ and e^- crossing channels

Internal background:

- ²⁰⁸TI and ²¹⁴Bi contamination in foil source
- ²¹⁴Bi from Rn decay in tracker volume

Measured through $e^{\scriptscriptstyle -}$ + Ny, $e^{\scriptscriptstyle -}$ + α and single $e^{\scriptscriptstyle -}$ channels

[NIM A 606: 449-465, 2009]

Signal over Background ratio = 76

Detection efficiency = 4.3 ± 0.7 %

• About 700 000 $2\nu\beta\beta$ events

 $T^{2v}_{1/2} = [7.16 \pm 0.01 \text{ (stat)} \pm 0.54 \text{ (syst)}] \times 10^{18} \text{ y}$

[Phys. Rev. D. 89.111101 (2014)]

NEMO-3: ¹⁰⁰Mo Ονββ result

Detailed paper to be published in the following weeks

- No event excess after 34.3 kg×y exposure
- $T^{0v}_{1/2} > 1.1 \times 10^{24} \text{ y} (90 \% \text{ C.L.}) \rightarrow \langle m_v \rangle < 0.3 0.9 \text{ eV}$

Expected background in [2.8 - 3.2] MeV

2νββ	8.45 ± 0.05
²¹⁴ Bi from radon	5.2 ± 0.5
External	< 0.2
²¹⁴ Bi internal	1.0 ± 0.1
²⁰⁸ TI internal	3.3 ± 0.3
Total	18.0 ± 0.3
Data	15

Total background: 1.3×10⁻³cts / (keV×kg×y)

NEMO-3: ¹⁰⁰Mo $Ov\beta\beta$ result

[Phys. Rev. D. 89.111101 (2014)]

Detailed paper to be published in the following weeks

Systematics

0vββ detection efficiency	7.0%
2vββ events in window	0.7%
²¹⁴ Bi contamination	10.0%
²⁰⁸ TI contamination	10.0%

$T^{0v}_{1/2}$	limit set	with a m	odified	frequentist	analysis
[N.I.M.	A 434 (19	99) 435]			

- Using full information in $E_{Tot} = [2.0; 3.2]$ MeV
- Detection efficiency: $11.3 \pm 0.8 \%$
- Account for statistical and systematic uncertainties and their correlation

	1	1	
Process	Stat. Only	Stat. + Syst.	Expected
Mass mechanism	1.1	1.1	1.0 [0.7; 1.4]
RH Current $\langle \lambda \rangle$ (qr.h. – Ir.h.)	0.7	0.6	0.5 [0.4; 0.8]
RH Current <η> (q _{l.h.} — I _{r.h.})	1.0	1.0	0.9 [0.6; 1.3]
Majoron (n=1)	0.050	0.044	0.039 [0.027; 0.059]

Limits at 90% C.L. in units of 10²⁴ y

NEMO-3: other results

Other isotopes: only partial exposure has been published

Analysis of whole statistics ongoing (⁸²Se, ⁴⁸Ca, ⁹⁶Zr, ¹¹⁶Cd, ¹⁵⁰Nd)...stay tuned!

¹⁰⁰Mo 0vββ decay to the ¹⁰⁰Ru excited states [Nuclear Physics A781 (2007) 209-226]

NEMO-3: high energy background

No events in 100 Mo foils after 34.3 kg×y > 3.2 MeV

No events in Cu & Te foils after 13.5 kg×y > 3.1 MeV

Promising background free technique for high $Q_{\beta\beta}$ isotopes

⁴⁸Ca (4.272 MeV), ¹⁵⁰Nd (3.368 MeV) or ⁹⁶Zr (3.350 MeV)

[Eur. Phys. J. C70: 927-943,2010]

SuperNEMO: toward the new generation

Extrapolate a well known technique:

- 100 kg of ββ emitter in 20 detection module
- Approach Inverted Hierarchy region

	NEMO-3	SuperNEMO		
Efficiency	18%	~30%		
Isotope	7 kg ¹⁰⁰ Mo	~100 kg ⁸² Se (¹⁵⁰ Nd, ⁴⁸ Ca)		
Exposure	35 kg y	~500 kg y		
Energy res.	8% @ 3 MeV	4% @ 3 MeV		
²⁰⁸ TI (source) ~100 µBq/kg		< 2 µBq/kg		
²¹⁴ Bi (source)	~ 300 µBq/kg	< 10 µBq/kg		
Rn (in tracker)	5 mBq/m ³	0.15 mBq/m ³		
T _{1/2}	10 ²⁴ y	10 ²⁶ y		
$\langle m_v \rangle$	0.3 - 0.9 eV	0.04 - 0.1 eV		

A challenge in many aspects:

- R&D program in the past years almost completed!
- Next step: Demonstrator module

SuperNEMO: the demonstrator module

One SuperNEMO module \rightarrow 7 kg ⁸²Se running ~2.5 y

- To be installed @ LSM (replacing NEMO-3)
- Match SuperNEMO requirements

Reach NEMO-3 (100Mo) sensitivity in 4.5 months

• Sensitivity: $\langle m_v \rangle \sim 0.20 - 0.40 \text{ eV}$

Schedule:

- Calorimeter & tracker under production
- Installation starting in 2015
- Commissioning & First data by 2016

SuperNEMO: the calorimeter

- 5" and 8" high quantum efficiency PMT directly coupled to a scintillator block with optimised geometry
- Energy resolution tests: 7.8 % FWHM @ 1 MeV
- Electronics, optical modules, shield & mechanical structure under production

- 2034 Geiger cells in a Rn-tight tracker chamber surrounded by Optical Modules
- Drift cells under production. Tracker assembly in 4 pieces (C0 to C3)
- Commissioning of C0 ongoing at sea level, C1 under construction.
- Preliminary radon emanation : $0.236 \pm 0.035 \text{ mBq/m}^3$ close to the requirement!

- About 37 foils installed on the source frame in the detector center
- ⁸²Se powder mixed with PVA glue + mylar or nylon mechanical support
- Limits on foil contamination in ²⁰⁸TI (2 μBq/kg) and ²¹⁴Bi (10 μBq/kg) are challenging
- Purification technique under investigation: chemical chromatography, distillation, etc.

SuperNEMO: radio-purity measurements

Radon:

- Control the Radon emanation of the materials
- Radon purification/absorption with dedicated setup
 Detector radio-purity budget:
 - Material validation with HPGe detectors

Source foils:

- Dedicated setup operating at LSC (Canfranc): detect delayed β-α from Bi-Po chain
- First two ⁸²Se foils currently under measurement

Summary & conclusions

Tracking + Calo. technique

Latest NEMO-3 results

SuperNEMO
demonstrator

- Unique: allowing direct reconstruction of the 2e⁻
- Full signature of $0\nu\beta\beta$ events and powerful background rejection
- Background-free technique for high energy $Q_{\beta\beta}$ isotopes
- Total ¹⁰⁰Mo exposure of 34.3 kg×y shows no event excess
- $T^{0v_{1/2}} > 1.1 \times 10^{24} \text{ y} \rightarrow \langle m_v \rangle < 0.3 0.9 \text{ eV} @ (90 \% \text{ C.L.})$
- Other isotopes: re-analysis of full statistics ongoing
- Under construction: commissioning by 2016
- Foresee to run for 2.5 years with 7 kg of ⁸²Se
- $T^{0v}_{1/2} > 6.5 \times 10^{24} \text{ y} \rightarrow \langle m_v \rangle < 0.20 0.40 \text{ eV} @ (90 \% \text{ C.L.})$
- 20 demonstrator-like modules
- 100 kg of ⁸²Se running for 5 years
 - T^{0v}_{1/2} > 1 ×10²⁶ y \rightarrow (m_v) < 0.04 0.10 eV @ (90 % C.L.)

Future: Full SuperNEMO

Backup sides

1993 - 2000:

HdM (35.5 kg x y) & IGEX, ⁷⁶Ge

• $T^{0v}_{1/2} > 1.9 \ 10^{25} \text{ y} @ 90\% \text{ C.L.}$

HdM claim: $\langle m_{\beta\beta} \rangle = 0.32 + /- 0.03 \text{ eV}$

2000 - 2010:

Cuoricino (19.75 kg x y): TeO₂ bolometer

• ~11 kg ¹³⁰Te: $T^{0v}_{1/2} > 2.8 \ 10^{24} \text{ y} @ 90\% \text{ C.L.}$

NEMO3 (34.7 kg x y Mo): tracking + calorimetry

• ~7 kg ¹⁰⁰Mo: $T^{0v}_{1/2} > 1.1 \ 10^{24} \text{ y} @ 90\% \text{ C.L.}$

Since 2011: new generation, R&D for future scaling EXO200 (> 95 kg x y): Liquid Xe TPC Kamland-ZEN (190 kg x y): Liquid Scintillator

GERDA Phase 1 (>20 kg x y): Ge diodes

Future projects

5 years time scale:

- M ~ 10 50 kg of ββ isotope
- Background level 10⁻³ cts. /(keV kg y)
- Explore quasi-degenerate region

10 years time scale:

- M ~ 100 kg 1t of ββ isotope
- Background level 10⁻⁴ cts. /(keV kg y)
- Approach Inverse Hierarchy region
- Extended R&D: Energy resolution, particle ID, radio-purity
- Multi-phase approach: demonstrate scalability and background levels

CUORE, Gerda, Majorana, Lucifer, AMORE, NEXT, COBRA, EXO, SNO+, KamLAND-Zen, CANDLES, SuperNEMO, DCBA, ...

$$T_{1/2}^{0\nu} > \frac{N_A \ln 2}{n_\sigma} \times \frac{\epsilon}{A} \times \sqrt{\frac{M \times t}{B \times \Delta E}}$$

Which isotope?

	Isotope	Q _{ββ} [keV]	Nat. abund. (enrich.) [%]	G _{0v} [10 ⁻¹⁴ y ⁻¹] ^(*)	T ^{2v} _{1/2} [10 ¹⁹ y]	Experiment
	⁴⁸ Ca	4270	0.187 (73)	6.35	4.2 ^{+2.1} -1.0	NEMO3
	⁷⁶ Ge	2039	7.8 (86)	0.62	150±10	GERDA
	⁸² Se	2995	8.7 (97)	2.70	9.0±0.7	NEMO3
	⁹⁶ Zr	3350	2.8 (57)	5.63	2.0±0.3	NEMO3
11 7/1	¹⁰⁰ Mo	3034	9.6 (99)	4.36	0.71±0.04	NEMO3
3	¹¹⁶ Cd	2802	7.5 (93)	4.62	3.0±0.2	NEMO3
	¹³⁰ Te	2527	34.5 (90)	4.09	70±10	NEMO3
	¹³⁶ Xe	2480	8.9 (80)	4.31	238±14	KamlandZEN
	¹⁵⁰ Nd	3367	5.6 (91)	19.20	0.78±0.7	NEMO3

What is the status?

Light Majorana neutrino exchange		Rig e 🔪 cur	Right handed SUSY: neutralino or current gluino exchange			Majoron emission	
					^		
Isotope	Exposure (kg•y)	Half life (10 ²⁵ y) published	〈m _v 〉 (eV) published	〈λ〉(10 ⁻⁶) published	<η> (10 ⁻⁸) published	λ' ₁₁₁ /f (10 ⁻²) published	⟨g _{ee} ⟩ (10 ⁻⁵) published
¹⁰⁰ Mo ^[1] (NEMO-3)	34.7	0.1	0.33 - 0.87	0.9 - 1.3	0.5 - 0.8	4.4 - 6.0	2 - 5
¹³⁰ Te ^{[2][3]} (CUORICINO)	19.75	0.3	0.31 - 0.71	1.6 - 2.4	0.9 - 5.3		17 - 33
¹³⁶ Xe ^{[4][5]} (KamLAND-Zen)	89.5	1.9	0.14 - 0.34				
¹³⁶ Xe ^[9] (KamLAND-Zen)	109.4 + 89.5	2.6	0.14 - 0.28				
¹³⁶ Xe ^[6] (EXO-200)	99.8	1.1	0.19 - 0.45				
⁷⁶ Ge ^{[7][8]} (GERDA)	21.6	2.1	0.2 - 0.4				3.4 - 8.7
⁷⁶ Ge ^[9] (HdM)	35.5	1.9	0.4	1.1	0.6		8.1

Laser inter-calibration system:

- Gain and time survey twice a day PMTs linearity < 1% for E < 4 MeV</p>
- 82% of PMTs stable < 5% over the whole data taking</p>
- Validate PMT stability with the ²¹⁴Bi β-decay end point (3270 keV) background free channel

NEMO-S: external backgrounds

Radio-impurities in material, γ from (n,γ) and μ bremsstrahlung

e-γ and one-crossing-e channels

²⁰⁸TI (from ²³²Th) and ²¹⁴Bi (from ²³⁸U) contamination in foil source and ²¹⁴Bi from Rn decay in tracker volume

 $1eN\gamma$ (^{208}TI) and $1e1\alpha$ (^{214}Bi) channels

NEMO-3: ²²²Rn background

²²²Rn in the gas of the tracking chamber monitored through the 1e1a channel

Strongly suppressed upon flushing Rn-free air into a dedicated tent surrounding the detector

Phase 1: 37.7±0.1 mBq/m³

Phase 2: 6.46±0.02 mBq/m³

NEMO-3: Background measurement

NEMO-3: Systematic uncertainties

Systematics

0vββ detection efficinecy	7.0%	Measure activity of known ²⁰⁷ Bi source
2vββ events in window	0.7%	$2\nu\beta\beta$ energy spectrum fit for E > 2 MeV
²¹⁴ Bi contamination	10.0%	^{214}Bi measurement in 1e1a and 1e1y channel
²⁰⁸ TI contamination	10.0%	Measure activity of known ²³⁸ U source

NEMO-3: $2\nu\beta\beta$ of ¹⁰⁰Mo SSD/HSD

If the intermediate nucleus is a $J^{\pi}=1+$ state, the NME could be dominated by GT transitions through this state.

If the SSD hypothesis is confirmed

- $2\nu\beta\beta$ half-life could be determined from single- β and electron capture (EC) measurements.
- simplification in the theoretical description of the intermediate nucleus

Electron energy distribution in $2\nu\beta\beta$ decay of ^{100}Mo is in favour of SSD

¹⁰⁰Mo decays to excited states: constrain model for NME calculation

With NEMO3 after 7kg · yr of exposure (Phase1):

$$\begin{split} & \mathsf{T}_{1/2}{}^{2\mathsf{v}}(0^+ \to 0^+{}_1) = 5.7^{+1.3}{}_{-0.9} \text{ (stat)} \pm 0.8 \text{ (syst)} \times 10^{20} \text{ y} \\ & \mathsf{T}_{1/2}{}^{0\mathsf{v}}(0^+ \to 0^+{}_1) > 8.9 \times 10^{22} \text{ y} @ 90\% \text{ C.L.} \\ & \mathsf{T}_{1/2}{}^{2\mathsf{v}}(0^+ \to 2^+{}_1) > 1.1 \times 10^{21} \text{ y} @ 90\% \text{ C.L.} \\ & \mathsf{T}_{1/2}{}^{0\mathsf{v}}(0^+ \to 2^+{}_1) > 1.6 \times 10^{23} \text{ y} @ 90\% \text{ C.L.} \\ & \text{[Nuclear Physics A781 (2007) 209-226]} \end{split}$$

SuperNEMO: Radon measurements

• The Rn gas in the tracker volume was the dominant background in NEMO-3

- Reduce Rn contamination to 0.15 mBq/m³
- Control the Radon emanation of the materials
- Radon purification/absorption with dedicated setup
- Preliminary radon emanation of $CO = 0.236 \pm 0.035 \text{ mBq/m}^3$ limits is close!

SuperNEMO: radio-purity measurements

Detector radio-purity budget:

Materials validation with HPGe detectors (sensitivity ~ mBq)

Source foils:

- HPGe not sensitive enough for SuperNEMO requirement
- Dedicated setup operating since February 2013 @ LSC (Canfranc): BiPo
- Detecting delayed $\beta \alpha$ coincidence from Bi Po chain
- First two ⁸²Se foils currently under measurement

