

Radboud University Nijmegen

Recent results from cosmic-ray measurements with LOFAR

Satyendra Thoudam

Radboud University Nijmegen The Netherlands (For the LOFAR Cosmic-ray Key-science project)

> RICAP-13 : 24th May 2013 Roma, Italy

The LOFAR cosmic-ray group:

S. Buitink^{1,2} A. Corstanje¹ E. Enriquez¹ H. Falcke^{1,3,4} W. Frieswijk³ J. R. Hörandel^{1,4} M. Krause¹ M. Mevius² A. Nelles^{1,4} P. Schellart¹ O. Scholten² S. ter Veen¹ S. Thoudam¹ M. van den Akker¹

¹Radboud University Nijmegen, 6500 GL Nijmegen, The Netherlands
²Kernfysisch Versneller Instituut, NL-9747 AA Groningen, The Netherlands
³ASTRON, 7990 AA Dwingeloo, The Netherlands
⁴Nikhef, Science Park Amsterdam, 1098 XG Amsterdam, The Netherlands

Radio emission from air showers

Air shower radio measurements: Recent experiments

LOPES, Germany

LOFAR, Netherlands+

2000+ antennas (core) ~5 km²

Air shower radio measurements: Recent experiments

LOFAR: The LOw Frequency ARray

(2013, A&A accepted, arXiv: 1305.3550)

- An astronomical radio telescope in the Netherlands and its neighboring countries
- 33 Dutch + 8 International stations

LOFAR: The LOw Frequency ARray

(2013, A&A accepted, arXiv: 1305.3550)

- An astronomical radio telescope in the Netherlands and its neighboring countries
- 33 Dutch + 8 International stations
- Replaced big dishes by many cheap dipole antennas

LOFAR: The LOw Frequency ARray

(2013, A&A accepted, arXiv: 1305.3550)

- An astronomical radio telescope in the Netherlands and its neighboring countries
- 33 Dutch + 8 International stations
- Replaced big dishes by many cheap dipole antennas
- 24 stations in a dense core of ~5 km² in the Netherlands
- Each station consists of 96 low band + 48 high band antennas
- Low band: (10-80) MHz and High band: (100-240) MHz 300m
- For air shower measurements: Only core stations ~ 2000+ low band antennas

- It can point to different directions in the sky at one time
- Also, useful for cosmic-ray measurements

- It can point to different directions in the sky at one time
- Also, useful for cosmic-ray measurements

- It can point to different directions in the sky at one time
- Also, useful for cosmic-ray measurements

- It can point to different directions in the sky at one time
- Also, useful for cosmic-ray measurements

LORA: LOFAR Radboud air shower Array

- Purpose is to provide:
 - CR trigger to LOFAR
 - Air shower parameters
- 20 scintillation detectors
- Detector spacings ~ 50-100 m
- Energy range > 10¹⁶ eV
- Energy resolution ~30%
- Core position accuracy <5m
- Arrival direction accuracy < I °

Cosmic-ray observation

*LOFAR started taking data in June 2011 *Regular observation started early 2012 *Collected ~400 good quality events

A measured cosmic-ray event

LORA directional estimate

P. Schellart

LOFAR antennas
LORA detectors
Size denotes signal strength

A measured cosmic-ray event

More events

P. Schellart, A. Nelles

Measured distribution of events

Arrival direction distribution

P. Schellart, A. Nelles

- All events triggered by LORA
- 367 events fully reconstructed
- North-South asymmetry: (vxB) effect

Energy distribution

On-going works

X_{max} measurements

X_{max} measurements

Shower front studies

Ability of LOFAR to measure shape of shower front

LOFAR can resolve 2 ns (no additional phase calibration)

Simulated spherical shower front for measured air shower signals

Differences in time with respect to plane wave are resolvable

A.Corstanje

Understanding the emission components

P. Schellart

In-situ gain & timing measurements

Gain measurements

6.0e+06

Timing measurement

M. Krause, A.Corstanje

NuMoon: Measurement of the highest energy neutrinos & CRs

- LOFAR, with its high density antennas, is an ideal instrument to measure complex radio properties of air showers
- Since June 2011, LOFAR has measured ~370 good quality cosmic-ray events
- Current studies mainly focus on:
 - Detailed comparison with simulations
 - Xmax estimation
 - Understanding emission mechanisms
 - Shape of the shower front
- In near future, LOFAR will give us a detailed understanding of radio emission from air showers

Thank you for your attention