

IFAE 2017

XVI Incontri di Fisica delle Alte Energie

L'esperimento Muon g-2

Anna Driutti

Università degli studi di Udine

(on behalf of the Muon g-2 collaboration)
 [http://muon-g-2.fnal.gov]

Trieste, 19-21 aprile 2017 Aula Magna Edificio H3 Università degli Studi di Trieste via A. Valerio 12/2

Modello Standard (SM):

- migliore teoria che abbiamo per descrivere le leggi della natura;
- ci permette di descrivere quasi tutto, ma non fornisce una descrizione di alcuni ingredienti base dell'universo: materia/energia oscura, masse dei neutrini, asimmetria materia/antimateria, gravità ...

Nuove Frontiere della fisica delle particelle:

- Esperimenti ad alta energia: es. LHC (7 14 TeV).
- Esperimenti ad alta intensità: *es.* Long Baseline Neutrino Experiment (DUNE).
- Esperimenti di alta precisione: es. Muon g-2.

Filosofia degli esperimenti ad alta precisione: "differenze tra predizione dello SM e misura sperimentale possono indicare nuova fisica".

Il momento magnetico del muone

Il **muone** nel Modello Standard:

- è una particella puntiforme con spin 1/2;
- possiede un momento magnetico intrinseco:

$$\vec{\mu} = \mathbf{g} \frac{q}{2m} \vec{s}$$

 nella teoria di Dirac g = 2, ma con i contributi degli effetti di ordine più alto ("loops") g > 2.

• siamo interessati alla "anomalia" di g cioè:

$$a_{\mu} = \frac{g-2}{2}$$

- preferiamo a_µ ad a_e perchè essendo m_µ >> m_e si ha maggiore sensitività;
- a_{τ} sarebbe ancora meglio ma la particella tau ha un basso rate di produzione e decade velocemente.

a_{μ} nel Modello Standard

 $a_{\mu}^{\text{SM}} = a_{\mu}(\text{QED}) + a_{\mu}(\text{EW}) + a_{\mu}(\text{Had}) = (116591802 \pm 49) \times 10^{-11}$

QED: contributo con la minor incertezza, calcolato fino al 10° ordine (tutti i loops con γ ed ℓ , 12672 diagrammi di Feynman);

- EW: include W, Z e Higgs loops, calcolato fino al 2° ordine e stimato con logs al 3°;
- **Had** termine con maggior incertezza ($q \in g$ loops): **HVP** da misure sperimentali: $e^+e^- \rightarrow hadrons$; **HLbL** calcolato, dipendente dal modello usato.

A. Driutti (U. Udine)

Val. \pm Err. (×10⁻¹¹)

QED	116584718.951 ± 0.080
EW	153.6 ± 1
Had:	
HVP (lo) 6949 ± 43
HVP (h	-98.4 ± 0.7
HLbL	105 ± 26

SM Accuracy 0.42 ppm

Misure di a_µ: la storia

Attualmente la differenza tra valore sperimentale e la predizione teorica è:

$$\mathbf{a}_{\mu}^{\mathsf{Expt.}} - \mathbf{a}_{\mu}^{\mathsf{SM}} = (255 \pm 80) \times 10^{-11} \implies \text{differenza di } \mathbf{3.2}\sigma$$

Errori nei calcoli teorici? Incertezze sistematiche non incluse nel valore sperimentale? Nuova fisica?

A. Driutti (U. Udine)

Fisica oltre il Modello Standard

Se fosse nuova fisica sono possibili diverse spiegazioni: SUSY, dark photons...

radiative muon mass generation

D. Hertzog, Ann. Phys. 2015 (image D. Stöckinger)

Intento dell'esperimento g-2 a Fermilab

L'esperimento g-2 a Fermilab si propone di ridurre l'incertezza sperimentale di <u>circa un fattore 4</u> rispetto alla precedente misura fatta a BNL:

 $\delta(a_{\mu})^{\text{esp.}}$: 540 ppb \rightarrow 140 ppb

si prevede maggiore statistica ed una riduzione delle incertezze sistematiche. Ci si aspetta anche un miglioramento nell'incertezza della predizione teorica:

 $\delta(a_{\mu})^{\text{theo.}}: 420 \text{ ppb} \rightarrow 310 \text{ ppb}$

Se a_{μ} rimane la stessa misurata a BNL:

$$\mathbf{a}_{\mu}^{\mathsf{FNAL}} - \mathbf{a}_{\mu}^{\mathsf{SM}} > \mathbf{7}\sigma$$

La misura sperimentale

- 1. Produzione dei muoni polarizzati:
 - Recycler Ring: i protoni da 8 GeV provenienti dal Booster vengono raggruppati in 4 gruppi più piccoli;
 - **Target Station:** i protoni vengono fatti collidere su un bersaglio e le lenti di focalizzazione catturano i π^+ con p = 3.1 GeV/c (±10%).
 - Beam Transfer and Delivery Ring: nella prima parte (rettilineo) i muoni provenienti dal decadimento dei pioni vengono catturati, nella seconda (anello circolare) i protoni vengono rimossi.

• Muon Campus: arriva un fascio pulito di μ^+ polarizzato. Ci aspettiamo 21 volte la statistica di BNL.

La misura sperimentale

2. Iniezione dei muoni nel ring

Anello di 14 m con campo magnetico uniforme di 1.45 T trasportato da BNL: *"the Big Move"*

3. consideriamo $\vec{\omega_a}$ la differenza fra frequenza della precessione dello spin $(\vec{\omega_s})$ e la frequenza di ciclotrone $(\vec{\omega_c})$

$$\vec{\omega}_a = -\frac{Qe}{m} \left[a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \underbrace{\vec{\beta} \times \vec{E}}_{c} \right] \quad \blacksquare$$

$$g_{\mu} = 2$$

che è proporzionale ad a_{μ} se il contributo del campo E verticale di focalizzazione si cancella grazie al momento magico $p_{\mu} = 3.094 \text{ GeV}/c \Rightarrow \gamma = 29.3$. **Misurando** ω_a **e** *B* **otteniamo** a_{μ} .

A. Driutti (U. Udine)

La misura sperimentale

4. La formula finale:

$$a_{\mu} = \frac{\frac{\omega_{a}}{\omega_{p}}}{\frac{\mu_{\mu}}{\mu_{p}} - \frac{\omega_{a}}{\omega_{p}}}$$

dove:

 ω_a = frequenza di precessione anomala

 $\omega_{\mathbf{p}} = \text{frequenza di Larmor} \propto |\vec{B}|$

 μ_{μ}/μ_{p} = rapporto tra momenti magnetici del μ e del protone da esperimenti sulla struttura iperfina del muonio (δa_{μ} 25 ppb). 5. Budget Incertezze:

δa_{μ}	BNL (ppb)	FNAL goal (ppb)
ω_a statistica	480	100
ω_a sistematica	180	70
ω_p sistematica	170	70
Totale	540	140

Misura di ω_a

 ω_a si misura considerando che il decadimento del muone $\mu^+ \rightarrow e^+ v_e + v_{\mu}$:

viola la conservazione della parità $\Rightarrow e^+$ molto energetici sono emessi con spin parallelo a quello del μ .

Contando il numero di e^+ con $E_{e^+} > E_{soglia}$ in funzione del tempo otteniamo la modulazione di ω_a :

$$N(t) = N_0 e^{-t/\tau} [1 + A\cos(\omega_a t + \phi]]$$

 E_{e^+} e *t* sono le osservabili misurate.

Detectors per ω_a

Gli e^+ emessi dal decadimento del μ curvano e colpiscono i detectors:

<u>3 SISTEMI di TRACCIATORI</u>

- 1500 canali di "straw trakers";
- scopo monitorare la distribuzione spaziale del fascio.

24 CALORIMETRI

- matrici 6×9 di cristalli di PbF₂ letti da SiPM (Hamamatsu);
- buona risoluzione spaziale e temporale;
- digitizzatori a 5 canali, 800 MHz e 12-bit di risoluzione;
- DAQ system (MIDAS)
- Sistema di calibrazione laser → see Poster Section!

Misura di ω_p

- ω_p è proporzionale al campo magnetico: $\hbar\omega_p = 2\mu_p|B|$
- il campo magnetico viene mappato con la tecnica della NMR.

Tabella di Marcia

Proposte per nuove misure di a_{μ}

a^{HLO} from space-like region

$$\begin{split} t &= \frac{x^2 m_{\mu}^2}{x-1} \quad 0 \leq -t < +\infty \\ x &= \frac{t}{2m_{\mu}^2} (1 - \sqrt{1 - \frac{4m_{\mu}^2}{t}}); \quad 0 \leq x < 1; \end{split}$$

- a_μ^{HLO} is given by the integral of the curve (smooth behaviour)
- It requires a measurement of the hadronic contribution to the effective electromagnetic coupling in the space-like region Δα_{had}(t) (t=q²<0)
- It enhances the contribution from low q² region (below 0.11 GeV²)
- Its precision is determined by the uncertainty on $\Delta \alpha_{had}$ (t) in this region

Courtesy of G.Venanzoni

Proposte per nuove misure di a_{μ}

Experimental approach: **High precision measurement of a_{\mu}^{HLO} with a 150 GeV \mu beam on Be target at CERN** (through the elastic scattering $\mu e \rightarrow \mu e$)

For more details: "Measuring the leading hadronic contribution to the muon g-2 via µe scattering", G. Abbiendi, C.M. Carloni Calame, U. Marconi, C. Matteuzzi, G. Montagna, O. Nicrosini, M. Passera, F. Piccinini, R. Tenchini, L. Trentadue, G. Venanzoni, Eur.Phys.J. C77 (2017) no.3, 139 (also poster session)

Courtesy of G.Venanzoni

A. Driutti (U. Udine)

IFAE 2017 - Trieste, 19-21 Aprile 2017

Conclusioni

- l'intento dell'esperimento g-2 è misurare a_μ con estrema precisione:
 0.14 ppm;
- g-2 è un test di precisione dello SM: nuova fisica?
- l'inizio della **presa dati** è prevista per quest'anno e continuerà fino al 2020. **Primi risultati** sono attesi per il 2018.

Sessione Poster:

- Measurement of the leading hadronic contribution to the muon g-2 via space-like data
- 2 The Calibration System of the muon *g*-2 experiment at Fermilab

Grazie per l'attenzione!