Isospin-breaking effects in $K_{e 4}^{+}$decays

Marc Knecht
Centre de Physique Théorique UMR7332, CNRS Luminy Case 907, 13288 Marseille cedex 09 - France
knecht@cpt.univ-mrs.fr

8th International Workshop on Chiral Dynamics - Pisa, June 29-July 3, 2015

Based on work done in collaboration with V. Bernard and S. Descotes-Genon:

[^0]
OUTLINE

- Introduction - Motivation
- IB in the phases of the two-loop $K_{e 4}$ form factors
- Extraction of $\pi \pi$ scattering lengths a_{0}^{0} and a_{0}^{2}
- Radiative corrections and cusp in the $K_{e 4}^{ \pm}\left(\pi^{0} \pi^{0}\right)$ mode
- Summary - Conclusion

Introduction - Motivation

Only a handful of processes provide precise information on $\pi \pi$ scattering lengths:
$K \rightarrow \pi \pi \pi$, pionic atoms, $K \rightarrow \pi \pi \ell \nu_{\ell}$ ($K_{\ell 4}$ decays),...

- Geneva-Saclay: $\sim 30000 K_{e 4}^{+-}$events
[L. Rosselet et al., Phys. Rev. D 15, 574 (1977)]
- BNL-E865: ~ $400000 K_{e 4}^{+-}$events
[S. Pislak et al. (BNL-E865 Collaboration), Phys. Rev. Lett. 87, 221801 (2001)]
[Erratum-ibid. 105, 019901 (2010)]
[S. Pislak et al. (BNL-E865 Collaboration), Phys. Rev. D 67, 072004 (2003)]
[Erratum-ibid. D 81, 119903 (2010)]
- NA48/2: ~ $1100000 K_{e 4}^{+-}$events
[J.R. Batley et al. (NA48/2 Collaboration), Eur. Phys. J. C 54, 411 (2008)]
[J.R. Batley et al. (NA48/2 Collaboration), Eur. Phys. J. C 70, 635 (2010)]
- NA48/2: ~ $65100 K_{e 4}^{00}$ events
[J.R. Batley et al. (NA48/2 Collaboration), JHEP 1408, 159 (2014)]

Standard angular analysis of the $K_{e 4}^{+-}$form factors provides information on low-energy $\pi \pi$ scattering (Watson's theorem) through the phase difference

$$
\left[\delta_{S}(s)-\delta_{P}(s)\right]_{\exp }
$$

[N. Cabibbo, A. Maksymowicz, Phys. Rev. B 137, 438 (1965); Erratum-ibid 168, 1926 (1968)]
[F.A. Berends, A. Donnachie, G.C. Oades, Phys. Rev. 171, 1457(1968)]
measurable in the interference of the F^{+-}and G^{+-}form factors.

Comparison with solutions of the Roy equations

$$
\left[\delta_{S}(s)-\delta_{P}(s)\right]_{\text {exp }}=f_{\text {Roy }}\left(s ; a_{0}^{0}, a_{0}^{2}\right)
$$

allows to extract the values of the $\pi \pi S$-wave scattering lengths in the isospin channels $I=0,2$
$f_{\text {Roy }}\left(s ; a_{0}^{2}, a_{0}^{2}\right)$ follows from:

- dispersion relations (analyticity, unitarity, crossing, Froissard bound)
- $\pi \pi$ data at energies $\sqrt{s} \geq 1 \mathrm{GeV}$
- isospin symmetry

Solutions can be constructed for $\left(a_{0}^{0}, a_{0}^{2}\right) \in$ Universal Band
[B. Ananthanarayan, G. Colangelo, J. Gasser, H. Leutwyler, Phys. Rep. 353, 207 (2001)]

Once radiative corrections have been taken care of (see later), it is still important to take isospin-breaking corrections due to $M_{\pi} \neq M_{\pi^{0}}$ into account before analysing data
[J. Gasser, PoS KAON, 033 (2008), arXiv:0710.3048]
Evaluation of IB corrections in ChPT
[G. Colangelo, J. Gasser, A. Rusetsky, Eur. Phys. J. C 59, 777 (2009)]

$$
\longrightarrow a_{0}^{0}=0.2220(128)_{\text {stat }}(50)_{\text {syst }}(37)_{\text {th }} \quad a_{0}^{2}=-0.0432(86)_{\text {stat }}(34)_{\text {syst }}(28)_{\text {th }}
$$

However, IB corrections were evaluated at fixed values of the scattering lengths

$$
\left[\delta_{S}(s)-\delta_{P}(s)\right]_{\mathrm{exp}}=f_{\mathrm{Roy}}\left(s ; a_{0}^{0}, a_{0}^{2}\right)+\delta f_{\mathrm{BB}}\left(s ;\left(a_{0}^{0}\right)_{\mathrm{ChPT}},\left(a_{0}^{2}\right)_{\mathrm{ChPT}}\right)
$$

Drawback shared by other studies devoted to isospin breaking in ChPT (QCD+QED)
[V. Cuplov, PhD thesis (2004); V. Cuplov, A. Nehme, hep-ph/0311274]
[A. Nehme, Nucl. Phys. B 682, 289 (2004)]
[P. Stoffer, Eur. Phys. J. C 74, 2749 (2004)]

Is it possible to obtain

$$
\left[\delta_{S}(s)-\delta_{P}(s)\right]_{\exp }=f_{\text {Roy }}\left(s ; a_{0}^{0}, a_{0}^{2}\right)+\delta f_{\mathrm{IB}}\left(s ; a_{0}^{0}, a_{0}^{2}\right) ?
$$

What is the quantitative effect in the determination of the scattering lengths?

- NA48/2: ~ $65100 K_{e 4}^{00}$ events
[J.R. Batley et al. (NA48/2 Collaboration), JHEP 1408, 159 (2014)]
In the isospin limit, one form factor is common to $K_{e 4}^{+-}$and $K_{e 4}^{00}\left(F^{+-}=F^{00}\right)$. This can be tested with the available data:

$$
\begin{aligned}
&\left|V_{u s}\right| f_{s}\left[K_{e 4}^{+-}\right]=1.285 \pm 0.001_{\text {stat }} \pm 0.004_{\text {syst }} \pm 0.005_{\mathrm{ext}} \\
&\left(1+\delta_{E M}\right)\left|V_{u s}\right| f_{s}\left[K_{e 4}^{00}\right]=1.369 \pm 0.003_{\text {stat }} \pm 0.006_{\mathrm{syst}} \pm 0.009_{\mathrm{ext}} \\
& \longrightarrow\left(1+\delta_{E M}\right) \frac{f_{s}\left[K_{e 4}^{00}\right]}{f_{s}\left[K_{e 4}^{+-}\right]}=1.065 \pm 0.010
\end{aligned}
$$

$\delta_{E M}$ not known (apart from the not very explicit [B. Morel, Quoc-Hung Do, Nuovo Cim. A 46, 253 (1978)])
Main issue: radiative corrections have been applied to $K_{e 4}^{+-}$data. Computation of $\delta_{E M}$ should be carried out within the same framework as used there in order to make comparison meaningful

IB in the phases of the two-loop $K_{e 4}$ form factors

Goal: obtain a representation for $K_{e 4}$ form factors that is
a) valid at two loops in the low-energy expansion
b) where the $\pi \pi$ scattering lengths occur as free parameters
c) with IB effects included

Adapt the approach ("reconstruction theorem") described in
[J. Stern, H. Sazdjian, N. H. Fuchs, Phys. Rev. D 47, 3814 (1993), arXiv:hep-ph/9301244]
for the $\pi \pi$ scattering amplitude, and implemented in
[M. Knecht, B. Moussallam, J. Stern, N.H. Fuchs, Nucl. Phys. B 457, 513 (1995), arXiv:hep-ph/9507319]

Rests on very general principle
a) Relativistic invariance
b) Analyticity, unitarity, crossing
c) Chiral counting

Note: isospin symmetry not required
\longrightarrow Iterative two-step construction of two-loop representation for meson scattering amplitudes and $K_{e 4}$ form factors
projection over partial waves
unitarity dispersion relation

\longrightarrow Iterative two-step construction of two-loop representation for meson scattering amplitudes and $K_{e 4}$ form factors
projection
over partial waves unitarity dispersion relation

Partial-wave projections

$$
\begin{aligned}
\mathcal{F}^{a b}(s, t, u) & =\sum_{l \geq 0} f_{l}^{a b}\left(s, s_{\ell}\right) P_{l}\left(\cos \theta_{a b}\right), \\
\mathcal{G}^{a b}(s, t, u) & =\sum_{l \geq 1} g_{l}^{a b}\left(s, s_{\ell}\right) P_{l}^{\prime}\left(\cos \theta_{a b}\right), \\
\mathcal{R}^{a b}(s, t, u) & =\sum_{l \geq 0} r_{l}^{a b}\left(s, s_{\ell}\right) P_{l}\left(\cos \theta_{a b}\right)
\end{aligned}
$$

$$
\mathcal{F}^{a b}(s, t, u)=F^{a b}(s, t, u)+\left[\frac{M_{a}^{2}-M_{b}^{2}}{s}+\frac{M_{c}^{2}-s-s_{\ell}}{s} \frac{\lambda_{a b}^{\frac{1}{2}}(s)}{\lambda_{\ell c}^{\frac{1}{2}}(s)} \cos \theta_{a b}\right] G^{a b}(s, t, u),
$$

$$
\mathcal{G}^{a b}(s, t, u)=G^{a b}(s, t, u)
$$

$$
\mathcal{R}^{a b}(s, t, u)=R^{a b}(s, t, u)+\frac{M_{c}^{2}-s-s_{\ell}}{2 s_{\ell}} F^{a b}(s, t, u)
$$

$$
+\frac{1}{2 s s_{\ell}}\left[\left(M_{a}^{2}-M_{b}^{2}\right)\left(M_{c}^{2}-s-s_{\ell}\right)+\lambda_{a b}^{\frac{1}{2}}(s) \lambda_{\ell c}^{\frac{1}{2}}(s) \cos \theta_{a b}\right] G^{a b}(s, t, u)
$$

[F.A. Berends, A. Donnachie, G.C. Oades, Phys. Rev. 171, 1457 (1968)]
\longrightarrow Iterative two-step construction of two-loop representation for meson scattering amplitudes and $K_{e 4}$ form factors
projection
over partial waves unitarity dispersion relation

Chiral counting

$$
\begin{array}{cl}
\operatorname{Re} f_{0}^{a b}\left(s, s_{\ell}\right), \operatorname{Re} f_{1}^{a b}\left(s, s_{\ell}\right), \operatorname{Re} g_{1}^{a b}\left(s, s_{\ell}\right) \sim \mathcal{O}\left(E^{0}\right) & \operatorname{Im} f_{0}^{a b}\left(s, s_{\ell}\right), \operatorname{Im} f_{1}^{a b}\left(s, s_{\ell}\right), \operatorname{Im} g_{1}^{a b}\left(s, s_{\ell}\right) \sim \mathcal{O}\left(E^{2}\right) \\
\operatorname{Re} f_{l}^{a b}\left(s, s_{\ell}\right), \operatorname{Re} g_{l}^{a b}\left(s, s_{\ell}\right) \sim \mathcal{O}\left(E^{2}\right), l \geq 2 & \operatorname{Im} f_{l}^{a b}\left(s, s_{\ell}\right), \operatorname{Im} g_{l}^{a b}\left(s, s_{\ell}\right) \sim \mathcal{O}\left(E^{6}\right), l \geq 2
\end{array}
$$

[G. Colangelo, M. Knecht, J. Stern, Phys. Lett. B 336, 543 (1994), arXiv:hep-ph/9406211]

$$
\begin{gathered}
F^{a b}(s, t, u)=F_{S}^{a b}\left(s, s_{\ell}\right)+F_{P}^{a b}\left(s, s_{\ell}\right) \cos \theta_{a b}+F_{>}^{a b}\left(s, \cos \theta_{a b}, s_{\ell}\right) \\
G^{a b}(s, t, u)=G_{P}^{a b}\left(s, s_{\ell}\right)+G_{>}^{a b}\left(s, \cos \theta_{a b}, s_{\ell}\right) \\
\operatorname{Re} F_{>}^{a b}\left(s, \cos \theta_{a b}, s_{\ell}\right), \operatorname{Re} G_{>}^{a b}\left(s, \cos \theta_{a b}, s_{\ell}\right) \sim \mathcal{O}\left(E^{2}\right) \\
\operatorname{Im} F_{>}^{a b}\left(s, \cos \theta_{a b}, s_{\ell}\right), \operatorname{Im} G_{>}^{a b}\left(s, \cos \theta_{a b}, s_{\ell}\right) \sim \mathcal{O}\left(E^{6}\right) \\
F_{S}^{a b}\left(s, s_{\ell}\right)=f_{0}^{a b}\left(s, s_{\ell}\right)-\frac{M_{a}^{2}-M_{b}^{2}}{s} g_{1}^{a b}\left(s, s_{\ell}\right) \\
F_{P}^{a b}\left(s, s_{\ell}\right)=f_{1}^{a b}\left(s, s_{\ell}\right)-\frac{M_{c}^{2}-s-s_{\ell}}{s} \frac{\lambda_{a b}^{\frac{1}{2}}(s)}{\lambda_{\ell c}^{\frac{1}{2}}(s)} g_{1}^{a b}\left(s, s_{\ell}\right), \quad G_{P}^{a b}\left(s, s_{\ell}\right)=g_{1}^{a b}\left(s, s_{\ell}\right)
\end{gathered}
$$

\longrightarrow Iterative two-step construction of two-loop representation for meson scattering amplitudes and $K_{e 4}$ form factors
projection
over partial waves unitarity dispersion relation

Analyticity, unitarity

$$
\begin{aligned}
\operatorname{Im} f_{l}^{a b}\left(s, s_{\ell}\right) & =\sum_{\left\{a^{\prime}, b^{\prime}\right\}} \frac{1}{\mathcal{S}_{a^{\prime} b^{\prime}}} \frac{\lambda_{a^{\prime} b^{\prime}}^{\frac{1}{2}}(s)}{s} \operatorname{Re}\left\{t_{l}^{a^{\prime} b^{\prime} ; a b}(s)\left[f_{l}^{a^{\prime} b^{\prime}}\left(s, s_{\ell}\right)\right]^{\star}\right\} \theta\left(s-s_{a^{\prime} b^{\prime}}\right)+\mathcal{O}\left(E^{8}\right), \\
\operatorname{Im} g_{l}^{a b}\left(s, s_{\ell}\right) & =\sum_{\left\{a^{\prime}, b^{\prime}\right\}} \frac{1}{\mathcal{S}_{a^{\prime} b^{\prime}}} \frac{\lambda_{a^{\prime} b^{\prime}}^{\frac{1}{2}}(s)}{s} \frac{\lambda_{a^{\prime} b^{\prime}}^{\frac{1}{2}}(s)}{\lambda_{a b}^{\frac{1}{2}}(s)} \operatorname{Re}\left\{t_{l}^{a^{\prime} b^{\prime} ; a b}(s)\left[g_{l}^{a^{\prime} b^{\prime}}\left(s, s_{\ell}\right)\right]^{\star}\right\} \theta\left(s-s_{a^{\prime} b^{\prime}}\right)+\mathcal{O}\left(E^{8}\right)
\end{aligned}
$$

Involves also the mesonic scattering amplitudes $A^{a^{\prime} b^{\prime} ; a b}(s, \hat{t}), \hat{t}=\left(p_{a}-p_{a^{\prime}}\right)^{2}$

$$
A^{a^{\prime} b^{\prime} ; a b}(s, \hat{t})=16 \pi \sum_{l}(2 l+1) t_{l}^{a^{\prime} b^{\prime} ; a b}(s) P_{l}(\cos \hat{\theta})
$$

Partial waves $t_{l}^{a^{\prime} b^{\prime} ; a b}(s)$ parameterised in terms of the scattering lengths

Phases of the NNLO form factors

$$
\begin{aligned}
F(s, t, u) & =\widehat{F}_{S}\left(s, s_{\ell}\right) e^{i \delta_{S}\left(s, s_{\ell}\right)}+\widehat{F}_{P}\left(s, s_{\ell}\right) e^{i \delta_{P}\left(s, s_{\ell}\right)} \cos \theta+\operatorname{Re} F_{>}\left(s, \cos \theta, s_{\ell}\right)+\mathcal{O}\left(E^{6}\right), \\
G(s, t, u) & =\widehat{G}_{P}\left(s, s_{\ell}\right) e^{i \delta_{P}\left(s, s_{\ell}\right)}+\operatorname{Re} G_{>}\left(s, \cos \theta, s_{\ell}\right)+\mathcal{O}\left(E^{6}\right)
\end{aligned}
$$

$$
\operatorname{Re} F_{S}\left(s, s_{\ell}\right)=F_{S[0]}+F_{S[2]}\left(s, s_{\ell}\right)+\mathcal{O}\left(E^{4}\right), \quad \operatorname{Re} G_{P}\left(s, s_{\ell}\right)=G_{P[0]}+G_{P[2]}\left(s, s_{\ell}\right)+\mathcal{O}\left(E^{4}\right)
$$

$$
\operatorname{Re} t_{l}^{a^{\prime} b^{\prime} ;+--}(s)=\varphi_{l}^{a^{\prime} b^{\prime} ;+-}(s)+\psi_{l}^{a^{\prime} b^{\prime} ;+-}(s)+\mathcal{O}\left(E^{6}\right)
$$

$\delta_{S}\left(s, s_{\ell}\right)=\sum_{\left\{a^{\prime}, b^{\prime}\right\}} \frac{1}{\mathcal{S}_{a^{\prime} b^{\prime}}} \frac{\lambda_{a^{\prime} b^{\prime}}^{\frac{1}{2}}(s)}{s}\left[\varphi_{0}^{a^{\prime} b^{\prime} ;+-}(s) \frac{F_{S[0]}^{a^{\prime} b^{\prime}}+F_{S[2]}^{a^{\prime} b^{\prime}}\left(s, s_{\ell}\right)}{F_{S[0]}+F_{S[2]}\left(s, s_{\ell}\right)}+\psi_{0}^{a^{\prime} b^{\prime} ;+-}(s) \frac{F_{S[0]}^{a^{\prime} b^{\prime}}}{F_{S[0]}}\right] \theta\left(s-s_{a^{\prime} b^{\prime}}\right)+\mathcal{O}\left(E^{6}\right)$

$$
\delta_{P}\left(s, s_{\ell}\right)=\sum_{\left\{a^{\prime}, b^{\prime}\right\}} \frac{\lambda_{a^{\prime} b^{\prime} b^{\prime}}^{\frac{1}{2}}(s)}{s} \frac{\lambda_{a^{\prime} b^{\prime}}^{\frac{1}{2}}(s)}{\lambda_{a b}^{\frac{1}{2}}(s)}\left[\varphi_{1}^{a^{\prime} b^{\prime} ;+-}(s) \frac{G_{P[0]}^{a^{\prime} b^{\prime}}+G_{P[2]}^{a^{\prime} b^{\prime}}\left(s, s_{\ell}\right)}{G_{P[0]}+G_{P[2]}\left(s, s_{\ell}\right)}+\psi_{1}^{a^{\prime} b^{\prime} ;+-}(s) \frac{G_{P[0]}^{a^{\prime} b^{\prime}}}{G_{P[0]}}\right] \theta\left(s-s_{a^{\prime} b^{\prime}}\right)+\mathcal{O}\left(E^{6}\right)
$$

IB in the phases of the NNLO form factors

$$
\begin{aligned}
& \delta_{S}\left(s, s_{\ell}\right)-\delta_{0}(s)= \sigma(s)\left\{\left[\varphi_{0}^{+-}(s)-\stackrel{o}{0}_{+-}(s)\right]+\left[\psi_{0}^{+-}(s)-\stackrel{o}{0}_{+-}(s)\right]\right\} \\
&+\frac{1}{2} \sigma_{0}(s)\left[\varphi_{0}^{x}(s) \frac{F_{S[0]}^{00}+F_{S[2]}^{00}\left(s, s_{\ell}\right)}{F_{S[0]}^{+-}+F_{S[2]}^{+]}\left(s, s_{\ell}\right)}+\psi_{0}^{x}(s) \frac{F_{S[0]}^{00}}{F_{S[0]}^{+-}}\right] \\
&+\frac{1}{2} \sigma_{0}(s)\left[\varphi_{0}^{x}(s)+\stackrel{o}{\psi}_{0}^{x}(s)\right]+\mathcal{O}\left(E^{6}\right) \\
& \delta_{P}(s)-\delta_{1}(s)=\sigma(s)\left\{\left[\varphi_{1}^{+-}(s)-\stackrel{o}{\varphi}_{1}^{+-}(s)\right]+\left[\psi_{1}^{+-}(s)-\stackrel{o}{\psi}_{1}^{+-}(s)\right]\right\}+\mathcal{O}\left(E^{6}\right)
\end{aligned}
$$

Note:

1) the dependence of the phase on the form factors (Watson's theorem no longer holds)
2) the dependence on s_{ℓ} in $\delta_{S}\left(s, s_{\ell}\right)$, resulting from IB effects

Numerically, it turns out to be negligible \longrightarrow use $\delta_{S}(s) \equiv \delta_{S}(s, 0)$

Now we have

$$
\left[\delta_{S}(s)-\delta_{P}(s)\right]_{\mathrm{exp}}=f_{\mathrm{Roy}}\left(s ; a_{0}^{0}, a_{0}^{2}\right)+\delta f_{\mathrm{BB}}\left(s ; a_{0}^{0}, a_{0}^{2}\right)
$$

Figure 1: Isospin breaking in the phase of the two-loop form factors, $\Delta_{\mathrm{IB}}\left(s, s_{\ell}\right)$ as a function of the dipion invariant mass $M_{\pi \pi}=\sqrt{s}$, for $s_{\ell}=0$. The middle (light-blue) band corresponds to the $\left(a_{0}^{0}, a_{0}^{2}\right)=(0.182,-0.052)$, whereas the other two cases shown correspond to $\left(a_{0}^{0}, a_{0}^{2}\right)=(0.205,-0.055)$ (upper orange band) and to $\left(a_{0}^{0}, a_{0}^{2}\right)=(0.24,-0.035)$ (lower green band). The widths of these bands result from the uncertainty on the various inputs needed at two loops.

Extraction of $\pi \pi$ scattering lengths a_{0}^{0} and a_{0}^{2}

Re-analysis of NA48/2 data

Fit the data to (" $S-P$ fit")

$$
\begin{gathered}
{\left[\delta_{S}(s)-\delta_{P}(s)\right]_{\exp }=f_{\mathrm{Roy}}\left(s ; a_{0}^{0}, a_{0}^{2}\right)+\delta f_{\mathrm{IB}}\left(s ; a_{0}^{0}, a_{0}^{2}\right)} \\
a_{0}^{0}=0.221 \pm 0.018 \quad a_{0}^{2}=-0.0453 \pm 0.0106
\end{gathered}
$$

to be compared to

$$
\longrightarrow a_{0}^{0}=0.2220(128)_{\text {stat }}(50)_{\text {syst }}(37)_{\text {th }} \quad a_{0}^{2}=-0.0432(86)_{\text {stat }}(34)_{\text {syst }}(28)_{\text {th }}
$$

NA48/2 data alone provide a strong correlation between a_{0}^{0} and a_{0}^{2}, but a weaker constraint on each of them separately
\longrightarrow supply additional information, either from

- $I=2$ data in S-wave ("extended fit")
[S. Descotes-Genon, N.H. Fuchs, L. Girlanda, J. Stern, Eur. Phys. J. C 24, 469 (2002)]
- $N_{f}=2$ ChPT and scalar radius of the pion ("scalar fit")

$$
a_{0}^{2}=-0.0444+0.236\left(a_{0}^{0}-0.22\right)-0.61\left(a_{0}^{0}-0.22\right)^{2}-9.9\left(a_{0}^{0}-0.22\right)^{3} \pm 0.0008
$$

[G. Colangelo, J. Gasser, H. Leutwyler, Phys. Lett. B 488, 261 (2000)]

	With isospin-breaking corrections			Without isospin-breaking corrections		
	$S-P$	Extended	Scalar	$S-P$	Extended	Scalar
$\begin{gathered} a_{0}^{0} \\ a_{0}^{2} \\ \rho_{a_{0}^{0}, a_{0}^{2}} \\ \theta_{0} \\ \theta_{1} \\ \chi^{2} / N \\ \hline \end{gathered}$	$\begin{gathered} 0.221 \pm 0.018 \\ -0.0453 \pm 0.0106 \\ 0.964 \\ (82.3 \pm 3.4)^{\circ} \\ (108.9 \pm 2)^{\circ} \\ 7.6 / 6 \end{gathered}$	$\begin{gathered} \hline 0.232 \pm 0.009 \\ -0.0383 \pm 0.0040 \\ 0.881 \\ (82.3 \pm 3.4)^{\circ} \\ (108.9 \pm 2)^{\circ} \\ 16.6 / 16 \end{gathered}$	$\begin{gathered} \hline 0.226 \pm 0.007 \\ -0.0431 \pm 0.0019 \\ 0.914 \\ 82.3^{\circ} \\ 108.9^{\circ} \\ 7.8 / 8 \end{gathered}$	$\begin{gathered} 0.247 \pm 0.014 \\ -0.0357 \pm 0.0096 \\ 0.945 \\ (82.3 \pm 3.4)^{\circ} \\ (108.9 \pm 2)^{\circ} \\ 7.2 / 6 \end{gathered}$	$\begin{gathered} \hline 0.247 \pm 0.008 \\ -0.0349 \pm 0.0038 \\ 0.842 \\ (82.3 \pm 3.4)^{\circ} \\ (108.9 \pm 2)^{\circ} \\ 15.7 / 16 \end{gathered}$	$\begin{gathered} \hline 0.242 \pm 0.006 \\ -0.0396 \pm 0.0015 \\ 0.855 \\ 82.3^{\circ} \\ 108.9^{\circ} \\ 7.3 / 8 \end{gathered}$
$\begin{gathered} \alpha \\ \beta \\ \rho_{\alpha \beta} \\ \lambda_{1} \cdot 10^{3} \\ \lambda_{2} \cdot 10^{3} \\ \lambda_{3} \cdot 10^{4} \\ \lambda_{4} \cdot 10^{4} \end{gathered}$	$\begin{gathered} 1.043 \pm 0.548 \\ 1.124 \pm 0.053 \\ 0.47 \\ -3.56 \pm 0.68 \\ 9.08 \pm 0.28 \\ 2.38 \pm 0.18 \\ -1.46 \pm 0.10 \end{gathered}$	$\begin{gathered} 1.340 \pm 0.231 \\ 1.088 \pm 0.020 \\ 0.31 \\ -3.80 \pm 0.58 \\ 8.94 \pm 0.10 \\ 2.30 \pm 0.14 \\ -1.39 \pm 0.04 \end{gathered}$	$\begin{gathered} 1.179 \pm 0.123 \\ 1.116 \pm 0.007 \\ 0.02 \\ -3.89 \pm 0.10 \\ 9.14 \pm 0.04 \\ 2.32 \pm 0.04 \\ -1.45 \pm 0.02 \end{gathered}$	$\begin{gathered} 1.637 \pm 0.472 \\ 1.103 \pm 0.055 \\ 0.47 \\ -3.79 \pm 0.68 \\ 9.02 \pm 0.23 \\ 2.34 \pm 0.18 \\ -1.41 \pm 0.10 \end{gathered}$	$\begin{gathered} 1.672 \pm 0.208 \\ 1.098 \pm 0.021 \\ 0.32 \\ -3.78 \pm 0.57 \\ 9.02 \pm 0.11 \\ 2.34 \pm 0.14 \\ -1.40 \pm 0.04 \end{gathered}$	$\begin{gathered} 1.458 \pm 0.098 \\ 1.128 \pm 0.008 \\ 0.00 \\ -3.74 \pm 0.11 \\ 9.21 \pm 0.42 \\ 2.41 \pm 3.67 \\ -1.46 \pm 0.02 \end{gathered}$
$\begin{gathered} \hline \bar{\ell}_{3} \\ \bar{\ell}_{4} \\ X(2) \\ Z(2) \end{gathered}$	$\begin{gathered} \hline 3.15 \pm 9.9 \\ 5.3 \pm 0.8 \\ 0.88 \pm 0.05 \\ 0.87 \pm 0.03 \\ \hline \end{gathered}$	$\begin{gathered} -10.2 \pm 5.7 \\ 4.4 \pm 0.6 \\ 0.80 \pm 0.06 \\ 0.89 \pm 0.02 \end{gathered}$	$\begin{gathered} -2.7 \pm 6.6 \\ 5.1 \pm 0.3 \\ 0.82 \pm 0.02 \\ 0.86 \pm 0.01 \end{gathered}$	$\begin{gathered} -39.9 \pm 20.3 \\ 5.2 \pm 0.8 \\ 0.72 \pm 0.05 \\ 0.87 \pm 0.02 \\ \hline \end{gathered}$	$\begin{gathered} \hline-43.5 \pm 19.1 \\ 5.2 \pm 0.7 \\ 0.71 \pm 0.05 \\ 0.87 \pm 0.02 \end{gathered}$	$\begin{gathered} -19.6 \pm 7.8 \\ 6.0 \pm 0.4 \\ 0.75 \pm 0.03 \\ 0.85 \pm 0.01 \end{gathered}$

Table 1: Scattering lengths, subthreshold parameters and chiral low-energy constants for the different fits considered, with and without the isospin-breaking correction.

Figure 2: Results of the fits to the NA48/2 data in the $\left(a_{0}^{0}, a_{0}^{2}\right)$ plane. The two black solid lines indicate the universal band where the two S-wave scattering lengths comply with dispersive constraints (Roy equations) and high-energy data on $\pi \pi$ scattering. The orange band is the constraint coming from the scalar radius of the pion. The small dark (purple) ellipse represents the prediction based on $N_{f}=2$ chiral perturbation theory. The three other ellipses on the left represent, in order of increasing sizes, the 1- σ ellipses corresponding to the scalar (orange ellipse), extended (blue ellipse) and $S-P$ (green ellipse), respectively, when isospin-breaking corrections are included. The light-shaded ellipses on the right represent the same outputs, but obtained without including isopin-breaking corrections.

Radiative corrections and cusp in $K_{e 4}^{00}$ mode

NA48/2: $\sim 65100 K_{e 4}^{00}$ events

$$
\longrightarrow\left(1+\delta_{E M}\right) \frac{f_{s}\left[K_{e 4}^{00}\right]}{f_{s}\left[K_{e 4}^{+-}\right]}=1.065 \pm 0.010
$$

[J.R. Batley et al. (NA48/2 Collaboration), JHEP 1408, 159 (2014)]

At lowest-order in ChPT

$$
\frac{f_{s}\left[K_{e 4}^{00}\right]}{f_{s}\left[K_{e 4}^{+-}\right]}=\left(1+\frac{3}{2 R}\right) \sim 1.040 \quad R \equiv \frac{m_{s}-m_{u d}}{m_{d}-m_{u}} \sim 36
$$

[V. Cuplov, PhD thesis (2004); V. Cuplov, A. Nehme, hep-ph/0311274]
[A. Nehme, Nucl. Phys. B 682, 289 (2004)]
$\longrightarrow \delta_{E M}$ has to explain $\sim 1 / 3$ of the effect

Asymmetric treatment of the NA48/2 data as far as radiative corrections are concerned:

- $K_{e 4}^{+-} \longrightarrow$ Sommerfeld-Gamow-Sakharov factors and PHOTOS for photon emission + w.f. factors of QED, treating the mesons as pointlike
- $K_{e 4}^{00} \longrightarrow$ no radiative corrections applied (S-G-S factors not relevant)

Size of $\delta_{E M} ? \longrightarrow$ what does PHOTOS contain?

Non factorizable radiative corrections
Besides w.f. factors of QED, only diagram (a) is considered in a PHOTOS-like treatment of radiative corrections [diagrams $(b),(c)$, and (d) vanish for $m_{e} \rightarrow 0$] Adding the diagrams for the emission of a soft photon, one obtains

$$
\Gamma^{\mathrm{tot}}=\Gamma\left(K_{e 4}^{00}\right)+\bar{\Gamma}^{\mathrm{soft}}\left(K_{e 4 \gamma}^{00}\right)=\Gamma_{0}\left(K_{e 4}^{00}\right) \times\left(1+2 \delta_{E M}\right)
$$

with $\delta_{E M}=0.018 \longrightarrow \frac{f_{s}\left[K_{e}^{00}\right]}{f_{s}\left[K_{e 4}^{+}\right]}=1.065 \pm 0.010-0.018 \sim\left(1+\frac{3}{2 R}\right)$

$$
\text { cusp } \longrightarrow\left|a_{0}^{0}-a_{0}^{2}\right|
$$

with present statistics, the relative uncertainty varies from 40% to 80% depending on the parameterisation used
if statistical uncertainty is divided by 10 , the relative error drops to $10 \%-27 \%$ (DIRAC $\longrightarrow 4.3 \%$)

Summary - Conclusion

- The high-precision data for $\delta_{S}(s)-\delta_{P}(s)$ obtained by the NA48/2 experiment require that isospin-breaking corrections be included
- Since the ultimate goal is to extract a_{0}^{0} and a_{0}^{2}, the $\pi \pi$ scattering lengths in the isospin limit, the corrections should not be computed at fixed values of the scattering lengths, but should be parameterised in terms of them
- General properties (analyticity, unitarity, crossing, chiral counting) provide the necessary information to do this in a model independent way

$$
\left[\delta_{S}(s)-\delta_{P}(s)\right]_{\mathrm{exp}}=f_{\mathrm{Roy}}\left(s ; a_{0}^{2}, a_{0}^{2}\right)+\delta f_{\mathrm{BB}}\left(s ; a_{0}^{2}, a_{0}^{2}\right)
$$

with $\delta f_{\mathrm{IB}}\left(s ; a_{0}^{2}, a_{0}^{2}\right)$ worked out at NLO

- Fit to NA48/2 data have been redone. Results compatible with those published by NA48/2 within errors
- Radiative corrections provided for $K_{e 4}^{00}$ in the same framework as used for $K_{e 4}^{+-}$. No apparent problem to explain remaining difference in form factors by $m_{u}-m_{d}$ effects
- A more quantitative statement would required a more involved treatment of radiative corrections (the quality of the data deserve it!), again taking into account the dependence on the scattering lengths

[^0]: S. Descotes-Genon, M. K., Eur. Phys. J. C 72, 1962 (2012) [arXiv:1202.5886 [hep-ph]]
 V. Bernard, S. Descotes-Genon, M. K., Eur. Phys. J. C 73, 2478 (2013) [arXiv:1305.3843 [hep-ph]]
 V. Bernard, S. Descotes-Genon, M. K., Eur. Phys. J. C 75, 145 (2015) [arXiv:1501.07102 [hep-ph]]

