Study of D-mesons in the hadronic channel with the ALICE detector Renu Bala (INFN Torino) for the ALICE Collaboration IX International Conference on Hyperons, Charm and Beauty Hadrons (BEACH2010) *Perugia* ### Outline.... - ➤ D Mesons Analysis with ALICE - ✓ Physics Motivation - \checkmark D⁰ → Kπ Analysis - \checkmark D⁺ → Kππ Analysis - > Results at 7 TeV pp data - Conclusions ### Physics Motivation A.A. collisions - * A unique probe to partonic matter - * Sensitive to initial **gluon density** and possible **medium effects** Parton energy loss --- heavy quark "dead cone" effect Study heavy quark (charm) production P-p collisions P-A collisions Measurement of HF production → test of pQCD calculations Baseline for A-A studies To disentangle initial and final state effects induced by the medium To do a good Job on the Charm, we need: Extremely Good Silicon detector (Secondary vertex, life time..) Extremely Good Particle Identification at low Pt (Kaon,pion) ### Selection Strategy Invariant-mass analysis of fullyreconstructed topologies originating from displaced vertices - ⇒ good pointing of reconstructed D momentum to the primary vertex - particle identification to tag the decay products ## Particle Identification Using TOF Kaon Identification to reject background at low P_t Measured value t_M =TOF-T0 Reference value t_k =Integrated time with K mass hypothesis Kaon compatible: $t_M - t_k \le 3\sigma$ Where σ is time resolution of TOF (160ps) $K-\pi$ seperation upto 1.5 GeV/c ### Particle Identification Using TPC TPC PID using energy loss (dE/dx) $(dE/dx_{measured}-dE/dx_{exp})$ </br/>N.sigma where dE/dx_{exp} from Bethe Bloch formula sigma=TPC dE/dx resolution identified if its energy loss is compatible with the Bethe Block for the given specie between N*sigma (N depending on the momentum range) •Rejected if out of a 3-sigma limit for the given specie •Unknown between N*sigma and 3. Unknown particle are kept unless TOF PID identifies the particle to be a different | Particle | Momentu
m | N | |----------|--------------|---| | Pion | 0-0.6 | 2 | | | 0.6-0.8 | 1 | | Kaon | 0-0.6 | 2 | | | 0.6-0.8 | 1 | ## D⁰ Selection Strategy #### pairs of opposite sign charged track - ✓ the product of the impact parameters of the two tracks $(d_0^k \times d_0^{\pi} << 0)$ - ✓ Pointing of the reconstructed D^0 momentum to the primary vertex (cosθpoint → 1) # D⁺ Selection Strategy Triplet of charged tracks with correct sign combination - distance(d_{ps}) between primary and secondary vertex. - The reconstructed momentum should point to the primary vertex $(\theta_{point} \sim 0)$ PI(DT $d_{PRIM-SEC}(\mu m)$ # Results at 7 TeV pp data : $D^0 \rightarrow K^-\pi^+$ Events: 1.25×10^8 Tracks requested: 4 Points in ITS at least one in Pixel Fit function: Signal → Gaussian Background → Exponential $S/B(2\sigma) \sim 0.27$ #### Invariant Mass Spectra in 4 P_t bins: 2-3, 3-5, 5-8 & 8-12 GeV/c # Results at 7 TeV pp data : $D^+ \rightarrow K^- \pi^+ \pi^+$ pp \sqrt{s} =7 TeV, 1.25 \times 10⁸ events, p_t^{D+}>2 GeV/c Events: 1.25 × 10⁸ Tracks requested: 4 Points in ITS at least one in Pixel Fit function: Signal→Gaussian Background→Exponential Signal/Background(2σ) \sim 0.85 #### Invariant Mass Spectra in 4 P_t bins: 2-3, 3-5, 5-8 & 8-12 GeV/c #### $D^0 \rightarrow K\pi$ | Pt bin | SIG | BKG | SIG/BKG | Sign. | Sign. (10 ⁹ evt) | |------------|-------------------|------------------|---------|-------------------|-----------------------------| | >2 GeV/c | 1183 ± 100 | 4459 ± 44 | 0.27 | 15.7 ± 1.3 | ~44 ± 4 | | 2-3 GeV/c | 236 ± 42 | 1045 ± 16 | 0.23 | 6.6 ± 1.2 | 19 ± 3 | | 3-5 GeV/c | 619 ± 72 | 2377 ± 34 | 0.26 | 11.3 ± 1.3 | 32 ± 4 | | 5-8 GeV/c | 281 ± 33 | 428 ± 16 | 0.66 | 10.5 ± 1.3 | 30 ± 4 | | 8-12 GeV/c | 102 ± 19 | 100 ± 8 | 1.2 | 7.2 ± 1.4 | 20 ± 4 | #### $D^+ \rightarrow K^- \pi^+ \pi^+$ | Pt bin | SIG | BKG | SIG/BKG | Sign. | Sign. (10 ⁹ evt) | |------------|-----------------|-----------------|---------|-------------------|-----------------------------| | >2 GeV/c | 554 ± 41 | 680 ± 15 | 0.85 | 15.8 ± 1.2 | ~44 ± 4 | | 2-3 GeV/c | 56 ± 14 | 84÷4 | 0.70 | 4.7 ± 1.3 | 15 ± 4 | | 3-5 GeV/c | 184 ± 21 | 193 ± 7 | 0.98 | 9.5 ± 1.1 | 29 ± 3 | | 5-8 GeV/c | 188 ± 20 | 152 ± 7 | 1.26 | 10.2 ± 1.1 | 30±3 | | 8-12 GeV/c | 130 ± 21 | 160 ± 10 | 0.93 | 7.6 ± 1.3 | 21 ± 4 | ### Conclusions - ALICE has an excellent capability for Charm physics in LHC - ✓ First D signal seen with 10⁷ events! - ✓ Significance of > 15 for $P_t > 2$ GeV/c with 10^8 events. - ✓ Expected to have a good significance for low P_t region (<2GeV/c) with 10^9 events. And after one year of data taking... Renu Bala for the ALICE Collaboration #### Expected Performance: Charm production measurement in pp Expected sensitivity in comparison to pQCD: ### Expected Performance: Charm Energy Loss in AA Low p_T : main effect on R_{AA} is nuclear shadowing High p_T : main effect on R_{AA} is energy loss 1 year at nominal luminosity (10⁷ central Pb-Pb events, 10⁹ pp events) Energy loss calculation: Armesto, Dainese, Salgado, Wiedemann, PRD71 (2005) 054027 # Thanks ### **BACK UP** ### Heavy Flavor at LHC Energies - ✓ Novelity of LHC: Large hard cross-section - ✓ HF are abundantly produced at the LHC R. Romita's Talk pQCD NLO + binary scaling + shadowing gives: | | pp | pp | Pb-Pb (5% most central) | |------------------|---------|-------|-------------------------| | \sqrt{s} (TeV) | 7 | 14 | 5.5 | | N_{cc}^{-} | ~ 0.1 | 0.16 | 115 | | N_{bb} | ~ 0.003 | 0.007 | 4.6 | ### ALICE Experiment - ALICE channels: - electronic ($|h| \le 0.9$) - muonic (-4<h<-2.5) - hadronic (|h|<0.9) - ALICE coverage: - Extends to low- p_T region - central and forward rapidity regions - Precise vertexing to identify D (ct ~ 100-300 mm) and B (ct ~ 500 mm) decays R. Romita's Talk ### Heavy-to-light ratios in ALICE Gluons → light hadrons and charm quark → D probes colour-charge dep. of QCD energy loss 1 year at nominal luminosity (10⁷ central Pb-Pb events, 10⁹ pp events) Renu Bala for the ALICE Collaboration