Study of D-mesons in the hadronic channel with the ALICE detector

Renu Bala (INFN Torino)

for the ALICE Collaboration

IX International Conference on Hyperons, Charm and Beauty Hadrons (BEACH2010) *Perugia*

Outline....

- ➤ D Mesons Analysis with ALICE
 - ✓ Physics Motivation
 - \checkmark D⁰ → Kπ Analysis
 - \checkmark D⁺ → Kππ Analysis
- > Results at 7 TeV pp data
- Conclusions

Physics Motivation

A.A. collisions

- * A unique probe to partonic matter
- * Sensitive to initial **gluon density** and possible **medium effects**

Parton energy loss

--- heavy quark "dead cone" effect

Study heavy quark (charm) production

P-p collisions

P-A collisions

Measurement of HF production → test of pQCD calculations

Baseline for A-A studies

To disentangle initial and final state effects induced by the medium

To do a good Job on the Charm, we need:

Extremely Good Silicon detector

(Secondary vertex, life time..)

Extremely Good Particle Identification at low Pt (Kaon,pion)

Selection Strategy

 Invariant-mass analysis of fullyreconstructed topologies originating from displaced vertices

- ⇒ good pointing of reconstructed D momentum to the primary vertex
- particle identification to tag the decay products

Particle Identification Using TOF

Kaon Identification to reject background at low P_t

Measured value t_M =TOF-T0 Reference value t_k =Integrated time with K mass hypothesis

Kaon compatible: $t_M - t_k \le 3\sigma$

Where σ is time resolution of TOF (160ps)

 $K-\pi$ seperation upto 1.5 GeV/c

Particle Identification Using TPC

TPC PID using energy loss (dE/dx)

 $(dE/dx_{measured}-dE/dx_{exp})$ </br/>N.sigma where dE/dx_{exp} from Bethe Bloch

formula

sigma=TPC dE/dx resolution

identified if its energy loss is compatible with the Bethe Block for the given specie

between N*sigma (N depending on the

momentum range)

•Rejected if out of a 3-sigma limit for the given specie

•Unknown between N*sigma and 3.
Unknown particle are kept unless TOF
PID identifies the particle to be a different

Particle	Momentu m	N
Pion	0-0.6	2
	0.6-0.8	1
Kaon	0-0.6	2
	0.6-0.8	1

D⁰ Selection Strategy

pairs of opposite sign charged track

- ✓ the product of the impact parameters of the two tracks $(d_0^k \times d_0^{\pi} << 0)$
- ✓ Pointing of the reconstructed D^0 momentum to the primary vertex (cosθpoint → 1)

D⁺ Selection Strategy

Triplet of charged tracks with correct sign combination

- distance(d_{ps}) between primary and secondary vertex.
- The reconstructed momentum should point to the primary vertex $(\theta_{point} \sim 0)$

PI(DT

 $d_{PRIM-SEC}(\mu m)$

Results at 7 TeV pp data : $D^0 \rightarrow K^-\pi^+$

Events: 1.25×10^8

Tracks requested:
4 Points in ITS

at least one in Pixel

Fit function:

Signal → Gaussian

Background → Exponential

 $S/B(2\sigma) \sim 0.27$

Invariant Mass Spectra in 4 P_t bins: 2-3, 3-5, 5-8 & 8-12 GeV/c

Results at 7 TeV pp data : $D^+ \rightarrow K^- \pi^+ \pi^+$

pp \sqrt{s} =7 TeV, 1.25 \times 10⁸ events, p_t^{D+}>2 GeV/c

Events: 1.25 × 10⁸

Tracks requested:
4 Points in ITS

at least one in Pixel

Fit function:

Signal→Gaussian
Background→Exponential

Signal/Background(2σ) \sim 0.85

Invariant Mass Spectra in 4 P_t bins: 2-3, 3-5, 5-8 & 8-12 GeV/c

$D^0 \rightarrow K\pi$

Pt bin	SIG	BKG	SIG/BKG	Sign.	Sign. (10 ⁹ evt)
>2 GeV/c	1183 ± 100	4459 ± 44	0.27	15.7 ± 1.3	~44 ± 4
2-3 GeV/c	236 ± 42	1045 ± 16	0.23	6.6 ± 1.2	19 ± 3
3-5 GeV/c	619 ± 72	2377 ± 34	0.26	11.3 ± 1.3	32 ± 4
5-8 GeV/c	281 ± 33	428 ± 16	0.66	10.5 ± 1.3	30 ± 4
8-12 GeV/c	102 ± 19	100 ± 8	1.2	7.2 ± 1.4	20 ± 4

$D^+ \rightarrow K^- \pi^+ \pi^+$

Pt bin	SIG	BKG	SIG/BKG	Sign.	Sign. (10 ⁹ evt)
>2 GeV/c	554 ± 41	680 ± 15	0.85	15.8 ± 1.2	~44 ± 4
2-3 GeV/c	56 ± 14	84÷4	0.70	4.7 ± 1.3	15 ± 4
3-5 GeV/c	184 ± 21	193 ± 7	0.98	9.5 ± 1.1	29 ± 3
5-8 GeV/c	188 ± 20	152 ± 7	1.26	10.2 ± 1.1	30±3
8-12 GeV/c	130 ± 21	160 ± 10	0.93	7.6 ± 1.3	21 ± 4

Conclusions

- ALICE has an excellent capability for Charm physics in LHC
 - ✓ First D signal seen with 10⁷ events!
 - ✓ Significance of > 15 for $P_t > 2$ GeV/c with 10^8 events.
 - ✓ Expected to have a good significance for low P_t region (<2GeV/c) with 10^9 events.

And after one year of data taking...

Renu Bala for the ALICE Collaboration

Expected Performance: Charm production measurement in pp

Expected sensitivity in comparison to pQCD:

Expected Performance: Charm Energy Loss in AA

Low p_T : main effect on R_{AA} is nuclear shadowing High p_T : main effect on R_{AA} is energy loss

1 year at nominal luminosity (10⁷ central Pb-Pb events, 10⁹ pp events)

Energy loss calculation: Armesto, Dainese, Salgado, Wiedemann, PRD71 (2005) 054027

Thanks

BACK UP

Heavy Flavor at LHC Energies

- ✓ Novelity of LHC: Large hard cross-section
- ✓ HF are abundantly produced at the LHC

R. Romita's Talk

pQCD NLO + binary scaling + shadowing gives:

	pp	pp	Pb-Pb (5% most central)
\sqrt{s} (TeV)	7	14	5.5
N_{cc}^{-}	~ 0.1	0.16	115
N_{bb}	~ 0.003	0.007	4.6

ALICE Experiment

- ALICE channels:
 - electronic ($|h| \le 0.9$)
 - muonic (-4<h<-2.5)
 - hadronic (|h|<0.9)
- ALICE coverage:
 - Extends to low- p_T region
 - central and forward rapidity regions
- Precise vertexing to identify D (ct ~ 100-300 mm) and B (ct ~ 500 mm) decays

R. Romita's Talk

Heavy-to-light ratios in ALICE

Gluons → light hadrons and charm quark → D

probes colour-charge dep. of QCD energy loss

1 year at nominal luminosity (10⁷ central Pb-Pb events, 10⁹ pp events)

Renu Bala for the ALICE Collaboration