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✔ Stellar explosions in binary systems 
consisting of a white dwarf accreting 
hydrogen-rich material from a 
companion main-sequence star.

✔ Powered by thermonuclear runaway 
on the surface of the white dwarf.

✔ Explosive nucleosynthesis leading to 
new elements ejected into the 
circumstellar medium.

Classical novae

✔ Two types, corresponding to different constitution of the underlying white dwarf, CO or 
ONe.

✔ Overall characteristics well described by theoretical models, but still key issues: 
- degree of mixing
- mixing mechanism
- observed ejecta masses



Nucleosynthesis in classical novae

✔ Study of nuclear reactions during the explosion can be used to constrain the physical 
properties of classical novae. 

✔ Bottleneck 30P(p,γ)31S reaction plays an important role in determining the synthesis of 
elements in the Si-Ca region, the heaviest species that can be produced in ONe novae: 

Main nuclear paths in the Si-Ca mass region
© José et al., ApJ 560 (2001)



Impact of the 30P(p,γ)31S reaction

✔ Important for understanding the high 30Si/28Si isotopic ratio found 
in presolar meteoritic grains from novae:

- 30Si/28Si ratio depends on 30P(p,γ)31S reaction which is in competition 
with 30P(β+) decay to 30Si.

✔ Elemental abundance ratios can be used to constrain the degree of 
mixing (“mixing meters”) and the peak temperature during the 
explosion (“nova thermometers”):

Presolar SiC grain

- 30P(p,γ)31S reaction rate uncertainty has the largest impact on the predicted ratios of Si/H, O/S, 
S/Al, O/P, P/Al.

Nova thermometers
© Downen et al., ApJ 762 (2009)



30P(p,γ)31S state of the art

 Reaction rate for a single narrow, isolated resonance: 

 Level scheme: Direct measurement of the 30P(p,γ)31S cross section not 
feasible due to the low intensities of 30P radioactive ion beams. 
 
 Indirect methods used to populate the states of the 31S 
compound nucleus in the Gamow window: 
- For temperature achieved in novae (T9 = 0.1-0.4): excitation 
energies up to 600 keV above Sp (6.131 MeV).
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 Resonance strength:
- Proton branching ratios Γ

p
/Γ measured for states above 6.7 MeV.

Wrede et al. (2009)
- Resonance strength (ωγ)

r
 constrained for key low energy 

resonances close to Sp. 
Kankainen et al. (2017)



31P(3He,t)31S*(p)30P coincidence measurement in Orsay 

 Set-up: Split-Pole (SP) magnetic spectrometer + Double Sided Silicon Strip Detector 
(DSSSD) array:

Beam: 
E(3He)  = 25 MeV
I(3He)  ≈ 100 enA

Target: 
31P ≈ 60 µg.cm-2 
natC

backing
 ≈ 100 µg.cm-2 

θSP =10°

 Coincidence measurement using the 31P(3He,t)31S reaction to populate indirectly 31S which 
proton decay to 30P:

3He
31P

31S* 30P

p

t Split-Pole

DSSSD

Coincidence

Triton separation in
Magnetic rigidity:

Bρ = p/q

ρ: bending radius



c

31P(3He,t)31S*(p)30P coincidence measurement in Orsay 

t-α angular correlation of 19F(3He,t)19Ne*(α)15O

- 6 DSSSDs (16+16 strips) at backward angles
- ε ≈ 15%, ΔE ≈ 20 keV FWHM
- Thick shield between 0° FC and DSSSDs
- Lower discriminator threshold to detect low 
energy protons associated to resonances of interest

D5&6

D1&2

D3&4

Shield

Target

Beam

Red: same experimental set-up as this work
Green: experimental set-up used by Wrede et al.

- Better c.m. angular coverage toward 90°

 Set-up: Split-Pole (SP) magnetic spectrometer + Double Sided Silicon Strip Detector 
(DSSSD) array:

 Coincidence measurement using the 31P(3He,t)31S reaction to populate indirectly 31S which 
proton decay to 30P:

3He
31P

31S* 30P

p

t Split-Pole

DSSSD

Coincidence
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 Triton-singles events spectrum:

ΔE-Bρ cutΔE ≈ 50 keV
(FWHM)

31P(3He,t)31S: Triton-singles events spectrum

 Triton identification by combining focal-plane detectors signals (Bρ in the position-
sensitive gas chamber, ΔE in the proportional gas counter, E in the plastic scintillator):

tritons

deuterons

B = 1.25 T

 Bρ calibration of the SP focal-plane position detector, using the triton spectrum at low 
excitation energies.
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 Triton-singles events spectrum:

 Triton identification by combining focal-plane detectors signals (Bρ in the position-
sensitive gas chamber, ΔE in the proportional gas counter, E in the plastic scintillator):

tritons
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 Bρ calibration of the SP focal-plane position detector, using the triton spectrum at low 
excitation energies.



ΔE-Bρ cut
EPlasG-Bρ cut
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Levels observed 
by Wrede et al.
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31P(3He,t)31S: Triton-singles events spectrum
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 Triton identification by combining focal-plane detectors signals (Bρ in the position-
sensitive gas chamber, ΔE in the proportional gas counter, E in the plastic scintillator):

tritons

deuterons

B = 1.25 T

 Bρ calibration of the SP focal-plane position detector, using the triton spectrum at low 
excitation energies.

 Triton-singles events spectrum:



 DSSSDs energy calibration using a pulse generator to obtain the electronic offset and a 
triple alpha-particle source (239Pu, 241Am and 244Cm) to measure the gain factor.

31P(3He,t)31S*(p)30P: t-p coincidence events

 Triton-proton timing spectrum: 

cut on the timing peak

Random
coincidence
background

t-p 
coincidence

events

 DSSSD energy vs SP Bρ spectrum: 

 SP focal plane spectrum gated on tritons (preliminary): 

Blue: triton-singles events

Red: candidate t-p 
coincidence events

Proton decays of resonances
 in 31S to the ground 

state of 30P

ΔT ≈ 25 ns FWHM



SUMMARY

 The 30P(p,γ)31S reaction is important for classical novae nucleosynthesis.

 We performed a coincidence measurement using the 31P(3He,t)31S*(p)30P 
reaction to extract the proton branching ratios.

 The triton-singles events spectrum and the preliminary coincidence spectrum 
have been presented.

 Next: extract the angular correlations and then the proton branching ratios, 
which will be used in the calculation of the 30P(p,γ)31S reaction rate.
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