Study of $\Upsilon(1S)$ radiative decays to $\gamma \pi^+ \pi^-$ and $\gamma K^+ K^-$

Antimo Palano

INFN and University of Bari, Italy
On behalf of the BABAR Collaboration

QCD@Work - International Workshop on QCD Theory and Experiment, 25-28 June 2018, Matera, Italy

Physics Motivations: Search for gluonium

- ☐ The search for gluonium states is still a hot topic for QCD (Y. Chen et al., Phys. Rev. D 73, 014516 (2006)).
- \Box The $J^{PC}=0^{++}$ glueball is expected in the mass region between 1.5 and 2.0 GeV.
- □ Scalar gluonium candidates are $f_0(500), f_0(1370), f_0(1500), f_0(1710)$

- \square A similar work could be done in $\Upsilon(1S)$ radiative decays.
- \Box Taking into account the total widths of J/ψ and $\Upsilon(1S)$, and the factor $(\frac{q_b}{q_c})^2(\frac{m_c}{m_b})^2$, radiative $\Upsilon(1S)$ decays are expected to be suppressed by a factor 25.

Analysis Strategy

- \square First study of radiative $\Upsilon(1S)$ decays from CLEO (Phys.Rev. D73, (2006) 032001)
- \Box The data were affected by a large background from $e^+e^- \rightarrow \gamma \ Vector$.
- \square In the present analysis (arXiv:1804.04044) we make use of $\Upsilon(2S)$ and $\Upsilon(3S)$ decays with integrated luminosities of 13.6 and 28.0 fb⁻¹.
- \square We reconstruct the decay chains:

$$\Upsilon(2S)/\Upsilon(3S) \rightarrow \pi_s^+ \pi_s^- \Upsilon(1S) \rightarrow \gamma \pi^+ \pi^- \rightarrow \gamma K^+ K^-$$

□ Require momentum balance and compute the recoiling mass

$$M_{\text{rec}}^2(\pi_s^+\pi_s^-) = |p_{e^+} + p_{e^-} - p_{\pi_s^+} - p_{\pi_s^-}|^2,$$

Events reconstruction

 \square Select events in the region:

$$|M_{\rm rec}(\pi_s^+\pi_s^-) - m(\Upsilon(1S))_f| < 2.5\sigma,$$

apply "very loose" particle identification and plot the $\pi^+\pi^-\gamma$ and $K^+K^-\gamma$ masses.

- \square In red are signal $\Upsilon(1S)$ Monte Carlo simulations.
- \square We isolate the decay $\Upsilon(1S) \rightarrow \gamma h^+ h^-$ requiring

$$9.1 \text{ GeV}/c^2 < m(\gamma h^+ h^-) < 9.6 \text{ GeV}/c^2$$

□ Yields

Final state	Yield $\Upsilon(2S)$	Yield $\Upsilon(3S)$
$\gamma \pi^+ \pi^-$	507	277
$\gamma K^+ K^-$	164	63

Combined $\pi^+\pi^-$ and K^+K^- mass spectra and background

 \square Observe rich resonance production.

 \square Background is studied using the $M_{\rm rec}(\pi_s^+\pi_s^-)$ sidebands.

Background contributions. $\Upsilon(3S)$: Dark grey, $\Upsilon(2S)$: Light grey

- \square Data from $\Upsilon(2S)$ almost background free.
- \square Contamination from a $\rho^0(770) \rightarrow \pi^+\pi^-$ in the $\Upsilon(3S)$ data to $\gamma\pi^+\pi^-$.
- \square Background from $\Upsilon(1S) \rightarrow \pi^+ \pi^- \pi^0$ with a missing γ consistent with zero.

Fits to the uncorrected $\pi^+\pi^-$ and K^+K^- mass spectra

 \square The total S-wave is described by a coherent sum of $f_0(500)$ and $f_0(980)$ as:

S-wave =
$$|BW_{f_0(500)}(m) + cBW_{f_0(980)}(m)e^{i\phi}|^2$$
.

- \square The $f_0(980)$ described by a coupled channel Breit-Wigner.
- \square For $f_0(500)$ we obtain:

$$m(f_0(500)) = 0.856 \pm 0.086 \,\text{GeV}/c^2, \Gamma(f_0(500)) = 1.279 \pm 0.324 \,\text{GeV}, \ \phi = 2.41 \pm 0.43 \,rad$$

 \square Also included contributions from $f_0(2100) \rightarrow \pi^+ \pi^-$ and $f_0(2200) \rightarrow K^+ K^-$.

Fitted yields

- \square Simultaneous fit to the $\Upsilon(2S)$ and $\Upsilon(3S)$ data for $\Upsilon(1S) \rightarrow \gamma \pi^+ \pi^-$.
- $\square \Upsilon(2S)$ and $\Upsilon(3S)$ data combined for $\Upsilon(1S) \rightarrow \gamma K^+ K^-$.

Resonances $(\pi^+\pi^-)$	Yield $\Upsilon(2S)$	Yield $\Upsilon(3S)$	Significance
S-wave	$133\pm16\pm13$	87 ± 13	12.8σ
$f_2(1270)$	$255 \pm 19 \pm 8$	$77\pm7\pm4$	15.9σ
$f_0(1710)$	$24\pm8\pm6$	$6\pm 8\pm 3$	2.5σ
Resonances (K^+K^-)	Yield $\Upsilon(2S) + \Upsilon(3S)$		Significance
$f_0(980)$	47 ± 9		5.6σ
$f_J(1500)$	$77 \pm 10 \pm 10$		8.9σ
$f_0(1710)$	$36 \pm 9 \pm 6$		4.7σ

- \square We label with $f_J(1500)$ the total enhancement in the 1500 MeV mass region.
- \square The combined $f_0(1710)$ significance is 5.7 σ .
- \square Systematic uncertainties dominated by the uncertainties on PDG resonances parameters.

Legendre polynomial moments

□ We define the helicity angle θ_H as the angle formed by the h^+ (where $h = \pi, K$), in the h^+h^- rest frame, and the γ in the $h^+h^-\gamma$ rest frame.

 \square Efficiency corrected $\pi^+\pi^-$ and K^+K^- mass spectra weighted by Legendre polynomial moments $Y_L^0(\cos\theta_H)$.

- \square Y_2^0 is related to the S-D interference, visible at the $f_2(1270)$ and $f'_2(1525)$ masses.
- \square Y_4^0 is related to *D*-wave, visible at the $f_2(1270)$ and $f_2'(1525)$ masses.

Simple Partial Wave Analysis.

 \square In a simplified procedure, the Y_L^0 moments are related to the S and D waves by the system of equations:

$$\begin{split} &\sqrt{4\pi}\langle Y_0^0\rangle = S^2 + D^2,\\ &\sqrt{4\pi}\langle Y_2^0\rangle = 2SD\cos\phi_{SD} + 0.639D^2,\\ &\sqrt{4\pi}\langle Y_4^0\rangle = 0.857D^2, \end{split}$$

 \square The system can be solved directly for S and D waves:

 \square We obtain an estimate of the efficiency corrected S-wave $\to \pi^+\pi^-$ yield

$$N(S-\text{wave}) = 629 \pm 128,$$

in agreement with the results from the fit to the $\pi^+\pi^-$ mass spectrum.

 \square The K^+K^- mass spectrum shows evidence for both $f_0(1510)$ and $f_2'(1525)$.

 $\pi_s^+\pi_s^-$ system angular analysis.

 \square We compute the helicity angle θ_{π} defined as the angle formed by the π_s^+ , in the $\pi_s^+\pi_s^-$ rest frame, with respect to the direction of the $\pi_s^+\pi_s^-$ system in the $\Upsilon(1S)\pi_s^+\pi_s^-$ rest frame.

- $\square |cos\theta_{\pi}|$ distribution for the $\Upsilon(2S)$ data and $\Upsilon(1S) \rightarrow \gamma \pi^{+} \pi^{-}$.
- \square This distribution is expected to be uniform if $(\pi_s^+\pi_s^-)$ is an S-wave system.
- \Box The distribution is consistent with this hypothesis with a p-value of 65%.

Full angular analysis.

 \square We define θ_{γ} as the angle formed by the radiative photon in the $h^+h^-\gamma$ rest frame with respect to the $\Upsilon(1S)$ direction in the $\Upsilon(2S)/\Upsilon(3S)$ rest frame.

 \square For $\Upsilon(nS) \to \pi_s^+ \pi_s^- \Upsilon(1S) (\to \gamma R)$, the expected angular distribution for a spin 2 resonance R is given by (arXiv:1804.04044)

$$W_{2}(\theta_{\gamma}, \theta_{H}) = \frac{dU(\theta_{\gamma}, \theta_{H})}{d\cos\theta_{\gamma} d\cos\theta_{H}} = \frac{15}{1024} |E_{00}|^{2} \left[6|A_{01}|^{2} \left(22|C_{10}|^{2} + 8|C_{11}|^{2} + 9|C_{12}|^{2} \right) + 2|A_{00}|^{2} \left(22|C_{10}|^{2} + 24|C_{11}|^{2} + 9|C_{12}|^{2} \right) + 24 \left(|A_{00}|^{2} + 3|A_{01}|^{2} \right) \left(2|C_{10}|^{2} - |C_{12}|^{2} \right) \cos 2\theta_{H} + 6 \left(|A_{00}|^{2} \left(6|C_{10}|^{2} - 8|C_{11}|^{2} + |C_{12}|^{2} \right) + |A_{01}|^{2} \left(18|C_{10}|^{2} - 8|C_{11}|^{2} + 3|C_{12}|^{2} \right) \right) \cos 4\theta_{H} - 2 \left(|A_{00}|^{2} - |A_{01}|^{2} \right) \cos 2\theta_{\gamma} \left(22|C_{10}|^{2} - 24|C_{11}|^{2} + 9|C_{12}|^{2} + 12 \left(2|C_{10}|^{2} - |C_{12}|^{2} \right) \cos 2\theta_{H} + 3 \left(6|C_{10}|^{2} + 8|C_{11}|^{2} + |C_{12}|^{2} \right) \cos 4\theta_{H} \right].$$

$$(1)$$

 \Box The expected angular distribution for a spin 0 resonance is given by

$$W_0(\theta_{\gamma}) = \frac{dU(\theta_{\gamma})}{d\cos\theta_{\gamma}} = \frac{3}{8}|C_{10}|^2|E_{00}|^2(|A_{00}|^2 + 3|A_{01}|^2 - (|A_{00}|^2 - |A_{01}|^2)\cos 2\theta_{\gamma}).$$

 \square The A_{ij} and C_{kl} represent the helicity contributions.

Fits to the angular distributions

□ We perform a 2D unbinned maximum likelihod fits in the resonances mass windows.

$$\mathcal{L} = \prod_{n=1}^{N} \left[f_{\text{sig}} \frac{\epsilon(\cos\theta_H, \cos\theta_\gamma) W_s(\theta_H, \theta_\gamma)}{\int W_s(\theta_H, \theta_\gamma) \epsilon(\cos\theta_H, \cos\theta_\gamma) d\cos\theta_H d\cos\theta_\gamma} + \frac{\epsilon(\cos\theta_H, \cos\theta_\gamma) W_b(\theta_H, \theta_\gamma)}{\int W_b(\theta_H, \theta_\gamma) \epsilon(\cos\theta_H, \cos\theta_\gamma) d\cos\theta_H d\cos\theta_\gamma} \right]$$

- \Box f_{sig} is the signal fraction and $\epsilon(\cos\theta_H,\cos\theta_\gamma)$ is the fitted efficiency.
- \square W_s and W_b are the functions describing signal and background (due to the tails of nearby adjacent resonances) contributions.
- \square Efficiency distributions in the $f_2(1270)$ and $f'_2(1525)$ mass regions.

Resonances full angular analysis

□ Unbinned maximum likelihod fits in the resonances mass windows.

$$f_2(1270) \rightarrow \pi^+ \pi^-$$

In grey background from S-wave

$$S$$
-wave $\to \pi^+ \pi^-$

 $\Upsilon(2S)$ data only

In grey background from $f_2(1270)$

$$f_2'(1525) \rightarrow K^+K^-$$

In grey contribution from $f_0(1500)$

 \square We obtain a $f_0(1500)$ contribution of $(52 \pm 14)\%$, in agreement with the results from the simple PWA.

Efficiency corrections

 \square To obtain the efficiency correction weight w_R for the resonance R we divide each event by the efficiency $\epsilon(\cos\theta_H,\cos\theta_\gamma)$

$$w_R = \frac{\sum_{i=1}^{N_R} 1/\epsilon_i (\cos \theta_H, \cos \theta_\gamma)}{N_R},$$

where N_R is the number of events in the resonance mass range.

□ Efficiency consistent with being uniform as a function of mass.

Evaluation of the Branching fractions

 \square We determine the branching fraction $\mathcal{B}(R)$ for the decay of $\Upsilon(1S)$ to photon and resonance R using the expression

$$\mathcal{B}(R) = \frac{N_R(\Upsilon(nS) \to \pi_s^+ \pi_s^- \Upsilon(1S)(\to R\gamma))}{N(\Upsilon(nS) \to \pi_s^+ \pi_s^- \Upsilon(1S)(\to \mu^+ \mu^-))} \times \mathcal{B}(\Upsilon(1S) \to \mu^+ \mu^-),$$

where N_R indicates the efficiency-corrected yield for the given resonance.

- \square We make use of the reference channel $\Upsilon(1S) \rightarrow \mu^+ \mu^-$ which has the same number of charged tracks.
- $\square \mathcal{B}(\Upsilon(1S) \to \mu^+ \mu^-) = 2.48 \pm 0.05\% \text{ (from PDG)}.$
- \Box The reference channel yields are

$$N(\Upsilon(2S) \to \pi_s^+ \pi_s^- \Upsilon(1S)(\to \mu^+ \mu^-)) = (4.35 \pm 0.12_{\text{sys}}) \times 10^5$$

and

$$N(\Upsilon(3S) \to \pi_s^+ \pi_s^- \Upsilon(1S)(\to \mu^+ \mu^-)) = (1.32 \pm 0.04_{\text{sys}}) \times 10^5$$

Measured $\Upsilon(1S) \rightarrow \gamma R$ branching fractions

Resonance	$\mathcal{B}(10^{-5})~(BABAR)$	CLEO
$\pi\pi$ S-wave	$4.63 \pm 0.56 \pm 0.48$	$(f_0(980)) \ 1.8^{+0.8}_{-0.7} \pm 0.1$
$f_2(1270)$	$10.15 \pm 0.59 ^{+0.54}_{-0.43}$	$10.2\pm0.8\pm0.7$
$f_0(1710) \rightarrow \pi\pi$	$0.79 \pm 0.26 \pm 0.17$	
$f_J(1500) \rightarrow K\bar{K}$	$3.97 \pm 0.52 \pm 0.55$	$3.7^{+0.9}_{-0.7} \pm 0.8$
$f_2'(1525)$	$2.13 \pm 0.28 \pm 0.72$	
$f_0(1500) \rightarrow K\bar{K}$	$2.08 \pm 0.27 \pm 0.65$	
$f_0(1710) \rightarrow K\bar{K}$	$2.02 \pm 0.51 \pm 0.35$	$0.76 \pm 0.32 \pm 0.08$

- \square Good agreement between BaBar and CLEO for $f_2(1270)$ and $f_J(1500)$.
- \square We report the first observation of $f_0(1710)$ in $\Upsilon(1S)$ radiative decay with a significance of 5.7σ and measure

$$\frac{\mathcal{B}(f_0(1710) \to \pi \pi)}{\mathcal{B}(f_0(1710) \to K\bar{K})} = 0.64 \pm 0.27_{\text{stat}} \pm 0.18_{\text{sys}},$$

in agreement with the world average value of $0.41^{+0.11}_{-0.17}$

Summary and conclusions

- \square We have studied the $\Upsilon(1S)$ radiative decays to $\gamma \pi^+ \pi^-$ and $\gamma K^+ K^-$ using BABAR data recorded at center-of-mass energies at the $\Upsilon(2S)$ and $\Upsilon(3S)$ resonances.
- \square We report the observation of broad S-wave, $f_0(980)$, $f_2(1270)$, $f_0(1710)$, $f_2'(1525)$ and $f_0(1500)$ resonances.
- \Box For $f_0(1710)$, Ref.(R. Zhu, JHEP 1509, 166 (2015)), in the gluonium hypothesis, predicts $\mathcal{B}(\Upsilon(1S) \to \gamma f_0(1710) = 0.96^{+0.55}_{-0.23} \times 10^{-4}$. Due to the presence of additional decay modes our result is consistent as well as for the dominance of an $s\bar{s}$ decay mode.
- \square For $f_0(1500) \rightarrow K\bar{K}$, Ref.(x. g. He et al., Phys. Rev. D **66**, 074015 (2002)) predicts $\mathcal{B}(\Upsilon(1S) \rightarrow \gamma f_0(1500))$ in the range $2 \sim 4 \times 10^{-5}$, consistent with our measurement.
- □ The status of $f_0(1370)$ is controversial. Ref. (R. Zhu, JHEP 1509, 166 (2015)) estimates $\mathcal{B}(\Upsilon(1S) \to \gamma f_0(1370)) = 3.2^{+1.8}_{-0.8} \times 10^{-5}$, in the range of our measurement of the branching fraction of $\mathcal{B}(\Upsilon(1S) \to \gamma(\pi\pi S\text{-wave}))$.
- □ These results may contribute to the long-standing issue of the identification of a scalar glueball.