Determination of $K \pi$ scattering lengths at physical kinematics

Tadeusz Janowski,
Peter Boyle, Andreas Jüttner, Chris Sachrajda
RBC-UKQCD collaboration SHEP
University of Southampton tj1g11@soton.ac.uk

Chiral Dynamics Conference, 29 Jun 2015

Scattering phase shifts

For a system with two (pseudo)scalar particles, the S-matrix in centre-of-mass frame can be written in partial wave basis as:

$$
\left\langle E^{\prime}, p^{\prime}, I^{\prime}, m^{\prime}\right| S|E, 0, I, m\rangle=\delta\left(E^{\prime}-E\right) \delta(p) \delta_{l / \prime} \delta_{m m^{\prime}} S_{l}(E)
$$

which is required by Lorentz invariance of the S-matrix, specifically $[H, S]=0,[P, S]=0,\left[J^{2}, S\right]=0,\left[J_{3}, S\right]=0$ and $\left[J_{ \pm}, S\right]=0$. Furthermore, unitarity of the S-matrix implies $S^{\dagger} S=S S^{\dagger}=1$ gives

$$
S_{l}(E)=e^{2 i \delta_{l}(E)}
$$

This means that the two (pseudo)scalar particle scattering can be expressed in terms of a single real parameter $\delta_{l}(E)$ called the phase shift.

Scattering length

At low energies (or equivalently momenta, k), phase shifts have the following threshold behaviour:

$$
\delta_{l}(k) \sim k^{\prime+1}
$$

- The dominant contribution will come from the s-wave $(I=0)$.
- We can define a constant called the scattering length:

$$
\left(\tan \delta_{0}(k) / k\right)^{-1}=\frac{1}{a_{0}}+\frac{r_{\text {eff }}}{2} k^{2}+\mathcal{O}\left(k^{4}\right)
$$

$K \pi$ scattering

With $m_{u}=m_{d} \equiv m_{u d}$ and QCD interactions only, isospin becomes a good quantum number.
Pions have $I=1$, kaons have $I=1 / 2$, so $K \pi$ can be in $I=3 / 2$ or $I=1 / 2$ state. Specifically:

$$
\begin{aligned}
& \left|I=3 / 2 ; I_{z}=3 / 2\right\rangle=\left|K^{+} \pi^{+}\right\rangle \\
& \left|I=3 / 2 ; I_{z}=1 / 2\right\rangle=\frac{1}{\sqrt{3}}\left|K^{0} \pi^{+}\right\rangle+\sqrt{\frac{2}{3}}\left|K^{+} \pi^{0}\right\rangle \\
& \left|I=3 / 2 ; I_{z}=-1 / 2\right\rangle=\frac{1}{\sqrt{3}}\left|K^{+} \pi^{-}\right\rangle+\sqrt{\frac{2}{3}}\left|K^{0} \pi^{0}\right\rangle \\
& \left|I=3 / 2 ; I_{z}=-3 / 2\right\rangle=\left|K^{0} \pi^{-}\right\rangle \\
& \left|I=1 / 2 ; I_{z}=1 / 2\right\rangle=\frac{1}{\sqrt{3}}\left|K^{+} \pi^{0}\right\rangle-\sqrt{\frac{2}{3}}\left|K^{0} \pi^{+}\right\rangle \\
& \left|I=1 / 2 ; I_{z}=-1 / 2\right\rangle=-\frac{1}{\sqrt{3}}\left|K^{0} \pi^{0}\right\rangle+\sqrt{\frac{2}{3}}\left|K^{+} \pi^{-}\right\rangle
\end{aligned}
$$

Experimental input

- Experimentally $K \pi$ phase shifts are determined from kaon-nucleon scattering by extrapolating to small transverse momentum
- The experimental input is most accurate at $\mathrm{E}>1 \mathrm{GeV}$
- Roy-Steiner eqations are used to calculate phase shifts at different energies ${ }^{1}$
- Low energy input (scattering lengths) can help to reduce the uncertainties in the dispersion relations.
${ }^{1}$ P. Büttiker et. al. Eur.Phys.J. C33 (2004) 409-432

Results so far

	$a_{0}^{3 / 2} m_{\pi}$	$a_{0}^{1 / 2} m_{\pi}$
Büttiker et. al.	$-0.0448(77)$	$0.224(22)$
$\mathcal{O}\left(p^{4}\right)$ ChPT	$-0.05(2)$	$0.19(2)$
NPLQCD 2	$-0.0574(16)\binom{+24}{-58}$	$0.1725(13)\binom{+23}{-156}$
Fu 3	$-0.0512(18)$	$0.1819(35)$
PACS-CS 4	$-0.0602(31)(26)$	$0.183(18)(35)$

Calculation also done by Lang et. al. ${ }^{5}$, but without extrapolation to physical point.
This work: evaluation of scattering length directly at physical point.
${ }^{2}$ S. R. Beane et al. [NPLQCD Collaboration], Phys. Rev. D 74 (2006) 114503
${ }^{3}$ Z. Fu, Phys. Rev. D 85 (2012) 074501
${ }^{4}$ Kiyoshi Sasaki (Tokyo Inst. Tech.) et al. [PACS-CS Collaboration], Phys.Rev. D89 (2014) 054502
${ }^{5}$ C. B. Lang, L. Leskovec, D. Mohler and S. Prelovsek, Phys . Rev. D 86 (2012) 054508

Chiral extrapolation

Plots taken from Lang et. al. Phys.Rev. D86 (2012) 054508.

In infinite volume, the two meson energies can be visualised on the complex energy plane as a branch cut starting at $m_{1}+m_{2}$. In finite volume this is replaced by series of poles.

Position of these poles can are related to the s-wave phase shifts by Lüscher's condition ${ }^{6}$:

$$
\delta(k)+\phi(k)=n \pi
$$

where $\phi(k)$ is a known function of the momentum k. This formula is valid below inelastic threshold.
${ }^{6}$ M. Lüscher, Nucl. Phys. B354 (1991) 531-578

$$
\begin{aligned}
C_{K \pi}^{\prime j}(t) & \equiv\left\langle O_{K \pi}^{i \dagger}(t) O_{K \pi}^{j}(0)\right\rangle \\
& =\operatorname{Tr}\left(e^{-H(T-t)} O_{K \pi}^{\dagger i} e^{-H t} O_{K \pi}^{j}\right) / \operatorname{Tr}\left(e^{-H T}\right) \\
& \stackrel{t \rightarrow \infty}{T \rightarrow \infty}\langle 0| O_{K \pi}^{i \dagger}|K \pi\rangle\langle K \pi| O_{K \pi}^{j}|0\rangle e^{-E_{K \pi} t}
\end{aligned}
$$

We use:

$$
O_{K \pi}^{ \pm}(t)=\left(\bar{s} \gamma^{5} I\right)\left(\bar{I} \gamma^{5} I\right)(t)
$$

Such operators have good overlap with $K \pi$ states and poor overlap with resonant states (e.g. $\kappa)^{7}$.

[^0]
$K \pi I=3 / 2$ contractions

$$
\begin{aligned}
& D=\operatorname{Tr}\left(S^{\dagger}(t ; 0) L(t ; 0)\right) \operatorname{Tr}\left(L(t ; 0)^{\dagger} L(t ; 0)\right) \\
& C=\operatorname{Tr}\left(S^{\dagger}(t ; 0) L(0 ; 0) L^{\dagger}(t+0 ; 0) L(t ; 0)\right)
\end{aligned}
$$

$$
C_{K \pi}^{I=3 / 2}(t)=D-C
$$

Rectangle graph for $\mathrm{I}=1 / 2$ correlator

Around-the-world effects

$$
\operatorname{Tr}\left(e^{-H\left(T-t_{1}\right)} O_{K \pi}^{\dagger i} e^{-H\left(t_{1}-t_{2}\right)} O_{K \pi}^{j}\right) / \operatorname{Tr}\left(e^{-H T}\right)
$$

$$
\begin{aligned}
C_{K \pi}(t) & \left.=\left|\langle K \pi| O_{K \pi}\right| 0\right\rangle\left.\right|^{2} e^{-E_{K \pi} t} \\
& \left.+\left|\langle 0| O_{K \pi}\right| K \pi\right\rangle\left.\right|^{2} e^{-E_{K \pi}(T-t)} \\
& \left.+\left|\langle K| O_{K \pi}\right| \pi\right\rangle\left.\right|^{2} e^{-m_{\pi}(T-t)} e^{-m_{K} t} \\
& \left.+\left|\langle\pi| O_{K \pi}\right| K\right\rangle\left.\right|^{2} e^{-m_{K}(T-t)} e^{-m_{\pi} t} \\
& +\ldots
\end{aligned}
$$

Lattice size	$48^{3} \times 96$	$64^{3} \times 128$
Gauge action	Iwasaki	Iwasaki
Fermion action	Möbius DWF	Möbius DWF
No. of configs	88	80
$\mathrm{a}^{-1}[\mathrm{GeV}]$	$1.730(4)$	$2.359(7)$
$\mathrm{L}[\mathrm{fm}]$	$5.476(12)$	$5.354(16)$
$m_{\pi}[\mathrm{MeV}]$	$139.2(2)$	$139.3(3)$
$m_{K}[\mathrm{MeV}]$	$499.2(2)$	$507.9(4)$
$m_{\pi} L$	$3.863(6)$	$3.778(8)$

- quark sources every second time slice on 48^{3}, every fourth on 64^{3}
- antiperiodic boundary conditions in time direction only

Preliminary results

Continuum extrapolation in a^{2} :

$a_{0} m_{\pi}$	48^{3}	64^{3}	continuum
$\mathrm{I}=3 / 2$	$-0.068(8)$	$-0.068(7)$	$-0.07(2)$
$\mathrm{I}=1 / 2$	$0.16(1)$	$0.16(1)$	$0.16(3)$

Improving the statistical error

$$
\begin{aligned}
C_{K \pi}(t) & \left.=\left|\langle K \pi| O_{K \pi}\right| 0\right\rangle\left.\right|^{2} e^{-E_{K \pi} t} \\
& \left.+\left|\langle 0| O_{K \pi}\right| K \pi\right\rangle\left.\right|^{2} e^{-E_{K \pi}(T-t)} \\
& \left.+\left|\langle K| O_{K \pi}\right| \pi\right\rangle\left.\right|^{2} e^{-m_{\pi}(T-t)} e^{-m_{K} t} \\
& \left.+\left|\langle\pi| O_{K \pi}\right| K\right\rangle\left.\right|^{2} e^{-m_{K}(T-t)} e^{-m_{\pi} t} \\
& +\ldots
\end{aligned}
$$

3-point functions

$\pi \rightarrow K$ and $K \rightarrow \pi$ matrix elements can be calculated in an alternative way using the following correlation functions:

$$
\begin{aligned}
C_{K \rightarrow \pi}(t) & =\langle\pi(\Delta) \pi(t+\delta) K(t) K(0)\rangle \\
& =\langle 0| O_{\pi}|\pi\rangle\langle\pi| O_{K \pi}|K\rangle\langle K| O_{K}|0\rangle e^{-m_{\pi}(\Delta-t)} e^{-m_{K} t} \\
& +\langle\pi| O_{\pi}|0\rangle\langle 0| O_{K \pi}|K \pi\rangle\langle K \pi| K|\pi\rangle e^{-m_{\pi}(T-\Delta)} e^{-E_{K \pi} t} \\
& +\ldots,
\end{aligned}
$$

$\pi \rightarrow K$ matrix element calculated in an analogous way.

Continuum extrapolation

Continuum extrapolation revisited:

$a_{0} m_{\pi}$	48^{3}	64^{3}	continuum
$\mathrm{I}=3 / 2$	$-0.068(8)$	$-0.068(7)$	$-0.07(2)$
$\mathrm{I}=1 / 2$	$0.16(1)$	$0.16(1)$	$0.16(3)$
$\mathrm{I}=3 / 2$	$-0.063(8)$	$-0.059(5)$	$-0.06(1)$
$\mathrm{I}=1 / 2$	$0.178(9)$	$0.170(9)$	$0.16(2)$

Comparison

	$a_{0}^{3 / 2} m_{\pi}$	$a_{0}^{1 / 2} m_{\pi}$
Büttiker et. al.	$-0.0448(77)$	$0.224(22)$
$\mathcal{O}\left(p^{4}\right)$ ChPT	$-0.05(2)$	$0.19(2)$
NPLQCD	$-0.0574(16)\binom{+24}{-58}$	$0.1725(13)\binom{+23}{-156}$
Fu	$-0.0512(18)$	$0.1819(35)$
PACS-CS	$-0.0602(31)(26)$	$0.183(18)(35)$
RBC-UKQCD (5p)	$-0.07(2)$	$0.16(3)$
(preliminary)		
RBC-UKQCD (3p)	$-0.06(1)$	$0.16(2)$
(preliminary)		

Comparison

Conclusions

- We are able to generate ensembles with physical pion and kaon masses.
- Calculation of $K \pi$ energies at low values of $m_{\pi} T$ and $m_{K} T$ suffers from significant around-the world effects.
- Around-the-world effects can be treated reliably using a 5-parameter fit...
- ...and even more reliably by including $K \rightarrow \pi$ and $\pi \rightarrow K$ matrix elements.
- First calculation of scattering lengths that does not rely on chiral perturbation theory.
- Although low statistics prevent us from obtaining an accurate $I=3 / 2$ result, we can get a good estimate for $I=1 / 2$, which has been dominated by $\chi P T$ errors in previous calculations.

Thank you for your attention!

[^0]: ${ }^{7}$ Kiyoshi Sasaki (Tokyo Inst. Tech.) et al. [PACS-CS Collaboration], Phys.Rev. D89 (2014) 054502

