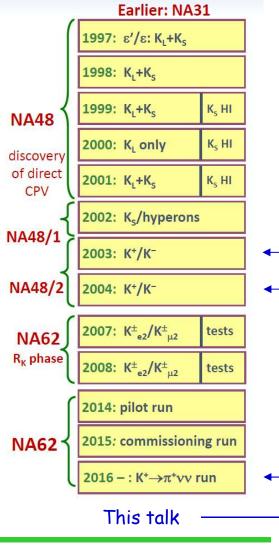
Review of NA62 and NA48 physics results

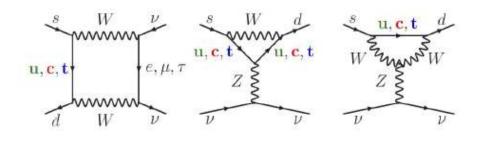
R. Fantechi INFN - Sezione di Pisa and CERN on behalf of the NA62 Collaboration

Birmingham, Bratislava, Bristol, Bucharest, CERN, Dubna (JINR), Fairfax, Ferrara, Florence, Frascati, Glasgow, Liverpool, Louvain-la-Neuve, Mainz, Merced, Moscow (INR), Naples, Perugia, Pisa, Prague, Protvino (IHEP), Rome I, Rome II, San Luis Potosi, Sofia, TRIUMF, Turin, Vancouver (UBC) ~200 participants


> QCD@Work Matera, June 24th-28th, 2018

Outline

- Kaon decays at CERN
- NA62 results
 - $K^+ \rightarrow \pi^+ \nu \nu$ preliminary analysis
 - Prospects
- NA48 results
 - Form factors in $K^{\pm} \to \pi^0 \, \ell^{\pm} \, \nu_{\ell}$
 - First observation of $K^{\pm} \rightarrow \pi^{+} \pi^{0} e^{+} e^{-}$
- Conclusions

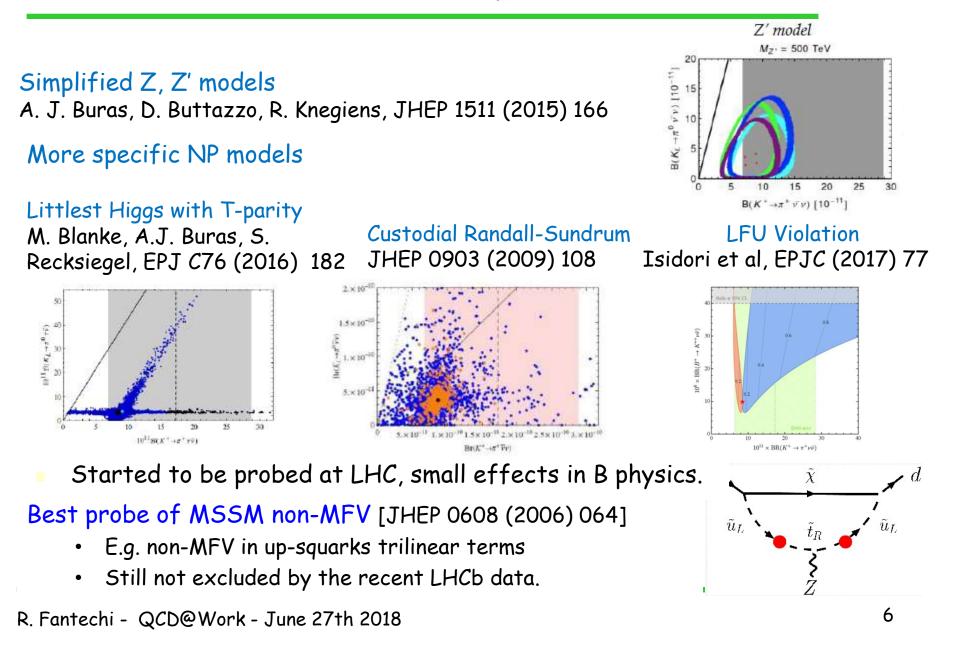

Kaon decays at CERN

NA62: $K \rightarrow \pi \nu \nu$

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$: clean theoretical environment

FCNC loop processes: s->d coupling Highest CKM suppression

Very clean theoretically No hadronic uncertainties Hadronic matrix element related to the precisely measured BR ($K^+ \rightarrow \pi^0 e^+ v$)


SM predictions [Buras et al. JHEP 1511 (2015) 33]

$$BR(K^{+} \to \pi^{+} \nu \overline{\nu}) = (8.39 \pm 0.30) \cdot 10^{-11} \cdot \left(\frac{V_{cb}}{0.0407}\right)^{2.8} \cdot \left(\frac{\gamma}{73.2^{0}}\right)^{0.74} = (0.84 \pm 0.10) \cdot 10^{-10}$$
$$BR(K^{0} \to \pi^{0} \nu \overline{\nu}) = (3.36 \pm 0.05) \cdot 10^{-11} \cdot \left(\frac{V_{ub}}{0.00388}\right)^{2} \cdot \left(\frac{V_{cb}}{0.0407}\right)^{2} \cdot \left(\frac{\sin \gamma}{\sin 73.2^{0}}\right)^{0.74} = (0.34 \pm 0.06) \cdot 10^{-10}$$

 $K \to \pi \nu \nu$ are the most sensitive probes to NP models among B and K decays

The combined measurement of K⁺ and K_L modes could shed light on the flavour structure of NP (Δ S=2 / Δ S=1 correlation)

$K \rightarrow \pi v \overline{v} NP$ sensitivity

Today status of $K \rightarrow \pi v \overline{v}$

E787/E949 @Brookhaven: 7 candidates $K^+ \rightarrow \pi^+ v \bar{v}$ 2 experiments, stopped kaon technique Separated K⁺ beam(710 MeV/c, 1.6MHz) PID: range (entire $\pi^+ \rightarrow \mu^+ \rightarrow e^+$ decay chain) Hermetic photon veto system Probability of all events to be background ~ 10⁻³ Expected background: 2.6 events

$$BR(K^+ \to \pi^+ \nu \overline{\nu}) = (1.73^{+1.15}_{-1.05}) \times 10^{-10}$$

Phys. Rev. D77,052003 (2008), Phys. Rev. D79,092004 (2009)

E391a @ KEK: Phys. Rev. D81,072004 (2010) $BR(K_L \rightarrow \pi^0 v \overline{v}) < 2.6 \times 10^{-8} (90\% CL)$ Preliminary from 2015 run of KOTO@JPARC: arXiv 1609.03637

$$BR(K_L \to \pi^0 \nu \overline{\nu}) < 5.1 \times 10^{-8} (90\% CL)$$

 $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ (AA + 10 90% CL limit Ŷ Cable Branching Ratio (K Asané 🔳 E787 1988 E787 1989 🔳 E787 89-91 10-9 E787 1995 E949(02) E787 Standard Model 0.66 x 10" 1970 1975 1950 1985 1990 1995 2000 2005 $K_L \to \pi^0 \nu \overline{\nu}$ $\rightarrow \pi^o \bar{\nu \nu}$ Littenberg 10 10 expected sensitivity of \boldsymbol{K}_{L} 10 E731 10 • E799 KTeV KTeV E391a-first E391a-fine Limit from $K^* \rightarrow \pi^* \nu \bar{\nu}$

standard Model expectation

1995

1996

Upper limit and

2005

2020

Year

NA62 goals and challenges

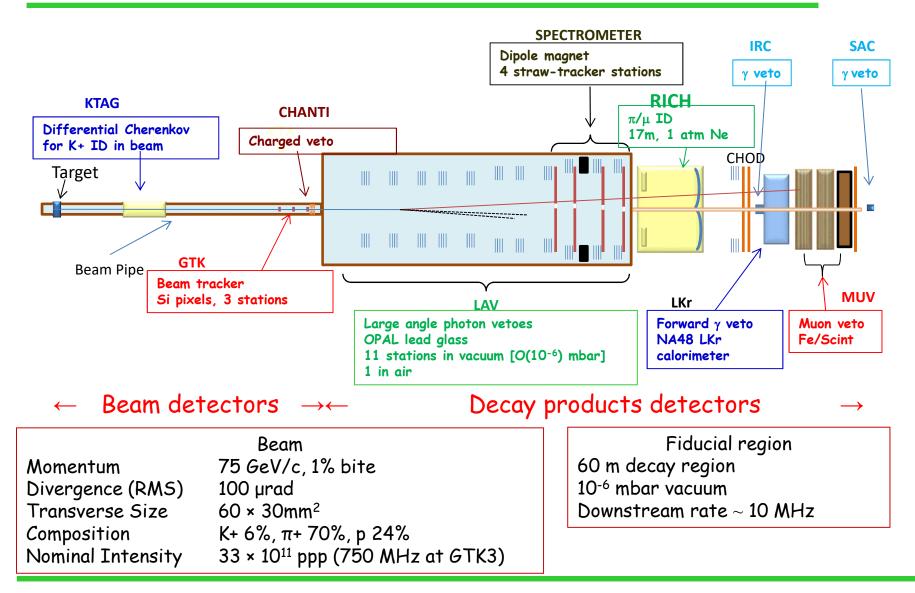
- Measurement of the $K^+ \rightarrow \pi^+ \nu \nu$ branching ratio
 - This requires at least 10¹³ Kaon decays
 - In-flight decay technique
 - 75 GeV beam helps in background rejection
 - Event selection with P_{π} <35 GeV/c
 - i.e. $K_{\pi 2}$ decays have around more than ~40 GeV of electromagnetic energy
 - O(10¹²) rejection factor of common K decays

Good tracking devices

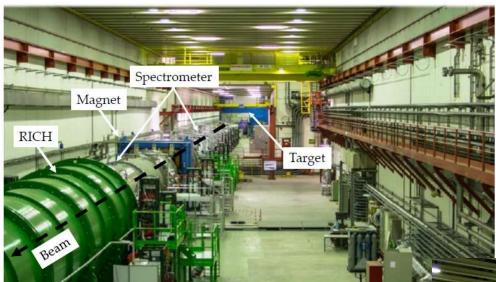
Particle identification

Accurate measurement of the kaon momentum Accurate measurement of the pion momentum Missing mass cut: $O(10^5)$ rejection on $K_{\mu 2}$, $O(10^4)$ on $K_{\pi 2}$

Veto detectors


Photons: to reduce the background by a factor of 10^8 Muons: add a rejection factor of $O(10^5)$

Identify kaons in the beam Identify positrons Additional π/μ rejection [O(10²)]


Precise sub-ns timing

Kaon-pion time association To reduce random veto

The NA62 detector

NA62 runs

2014: Pilot run

2015: Commissioning run

2016: Commissioning and physics run

2017: 160 days data taking

2018: Data taking ongoing (217 days)

R. Fantechi - QCD@Work - June 27th 2018

0.02 0.04 0.06

 $K^+ \rightarrow \pi^+ \pi^0(\gamma)$

 $K^* \rightarrow e^+ \pi^0 V$

-0.02

0

10-5

10-6

10

-0.04

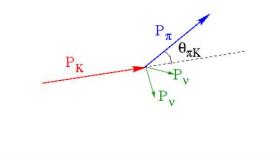
• 65 m long decay fiducial region, 15< $\mbox{P}\pi$ < 35 GeV/c

Signature: one incident kaon, 1 charged output track

• Missing mass distributions: $m_{miss}^2 = (P_K - P_{track(hyp \pi^+)})^2$

• Define two regions in m²_{miss} to accept candidate events

- Particle ID (Cherenkov detectors, calorimeters)
- Photon Veto


•Backgrounds:

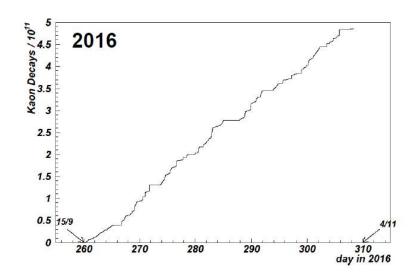
•Accidental beam activity

K⁺ decay in-flight

•K+ decay modes:

$K^{+} ightarrow \pi^{+} \pi^{0} (\gamma)$	Br = 0.2067
$K^{+} \rightarrow \mu^{+} \nu (\gamma)$	Br = 0.6356
$K^{+} \rightarrow \pi^{+}\pi^{+}\pi^{-}$	Br = 0.0558
$K^{+} \rightarrow \pi^{+}\pi^{-}e^{+}\nu$	Br = 4.25*10 ⁻⁵

 $K^+ \rightarrow \pi^+ \nu \overline{\nu} (\times 10^{10})$

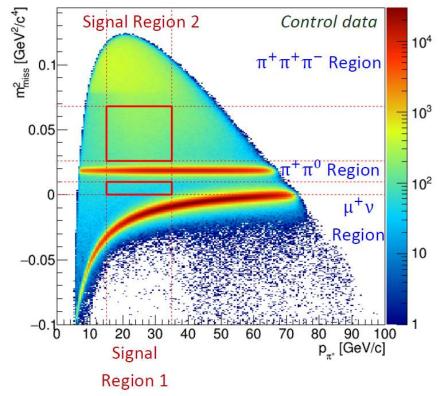

0.1 0.12 m²_{miss} [GeV²/c⁴]

0.08

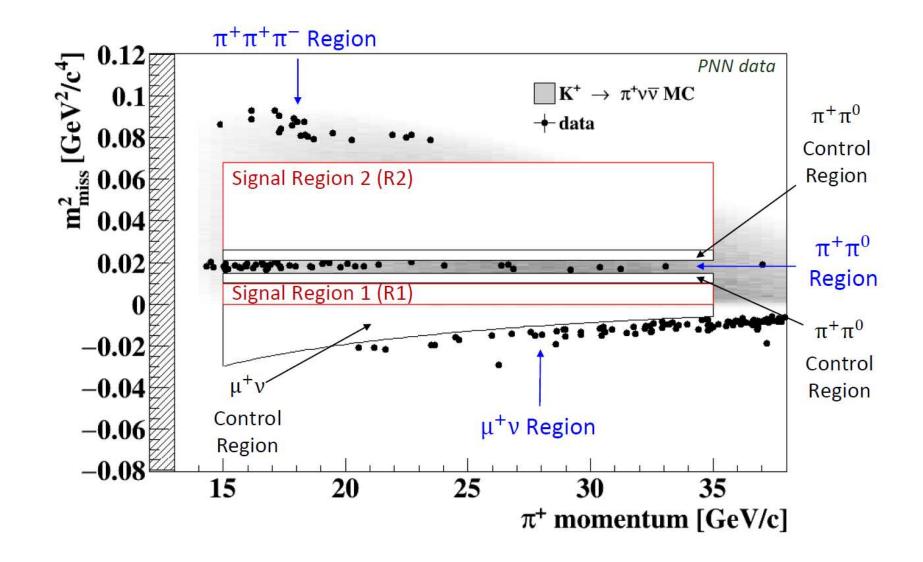
 $\mathbf{K}^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-}$

2016 data analysis

- 13.10¹¹ ppp on target
 - 40% of nominal intensity
- 10¹¹ K⁺ decays useful for $\pi\nu\nu$
- Blind analysis procedure
 - Signal and control region kept masked for the whole analysis
- Main trigger streams:
 - $\pi v v$, control
- Offline analysis
 - $\pi v v$ sample
 - Control samples
 - $\mathbf{K}^{+} \rightarrow \pi^{+}\pi^{0}$
 - $K^+ \rightarrow \mu^+ \nu$
 - $K^+ \rightarrow \pi^+ \pi^+ \pi^-$


Analysis steps

- Selection
- Determination of single event sensitivity (SES)
- Estimation and validation of the expected background
- Un-blinding of the signal regions and results

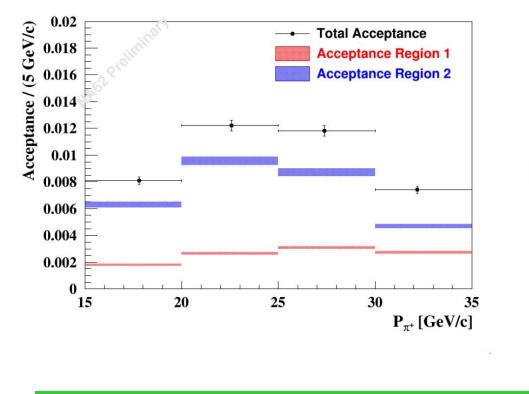

Kaon decay selection

- Selection
 - K⁺ decay into one charged particle
 - π^+ identification
 - Photon rejection
 - Multi track rejection
- Performances
 - GTK-KTAG-RICH timing: O(100 ps)
 - π^+ ID: ε_{μ} = 10⁻⁸; ε_{π^+} ~64%
 - γ /multi rejection $\varepsilon_{\pi 0}$ = 3 ·10⁻⁸
 - $\sigma(m_{miss}^2) \sim 10^{-3} \, GeV^2/c^4$

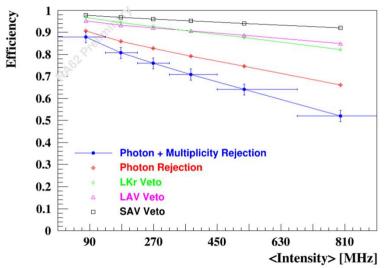
Selected K^+ decays, before π^+ id and γ /multi rejection

Data after selection

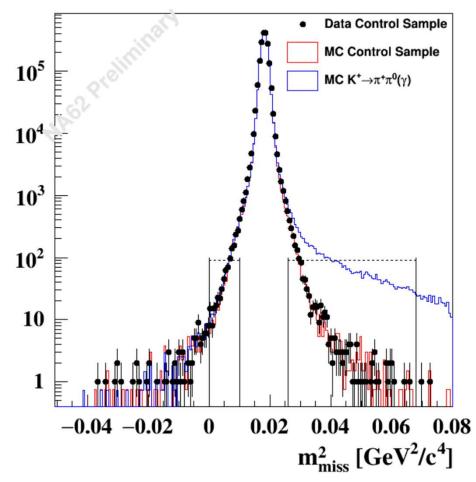
Single Event Sensitivity (SES)


- Determine Kaon flux from $K^* \rightarrow \pi^+ \pi^0$ selected with control trigger (downscale 400)
- Use the same $\pi\nu\nu$ selection, but without photon and multiplicity rejection and with missing mass cut modified

$$SES = \frac{1}{N_K(A_{\pi nn} \epsilon_{RV} \epsilon_{trig})} \qquad \qquad N_K = \frac{N_{\pi \pi} D}{A_{\pi \pi} B R_{\pi \pi}}$$

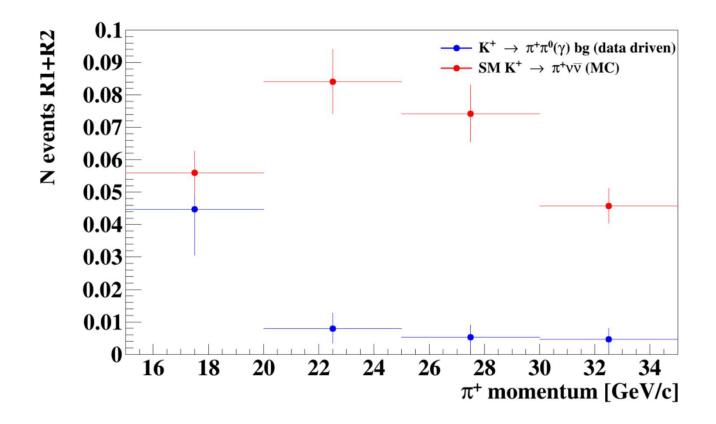

Number of K ⁺ decays	$N_{\rm K}$ = (1.21 ± 0.02) · 10 ¹¹
Acceptance for $K^{\star} \rightarrow \pi^{\star} \nu \nu$	$A_{\pi\nu\nu} = 0.040 \pm 0.001$
PNN trigger efficiency	ε _{trig} = 0.87 ± 0.02
Random veto	ε _{RV} = 0.76 ± 0.04
SES	$(3.15 \pm 0.01_{stat} \pm 0.24_{syst}) \cdot 10^{-10}$
Expected Standard Model $K^{*} \rightarrow \pi^{*} \nu \nu$	$0.267 \pm 0.001_{stat} \pm 0.020_{syst} \pm 0.032_{ext}$

SES: Signal acceptance and random veto


- Acceptance
 - Computed with MC
 - Particle ID, losses due to π^+ interaction included

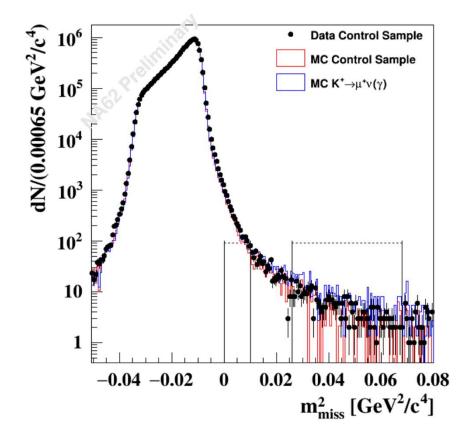
- Random veto
 - Random losses due to gamma and multiplicity rejection measured with $K^{\scriptscriptstyle +} \to \mu^{\scriptscriptstyle +}\nu$
 - $\epsilon_{\rm RV} = 0.76 \pm 0.04$
 - independent from $P_{\pi+}$
 - dependent on instantaneous intensity

$\pi^+ \pi^0$ (γ) background



 $N^{exp}_{\pi\pi}(region) = N(\pi^+\pi^0) f^{kin}(region)$

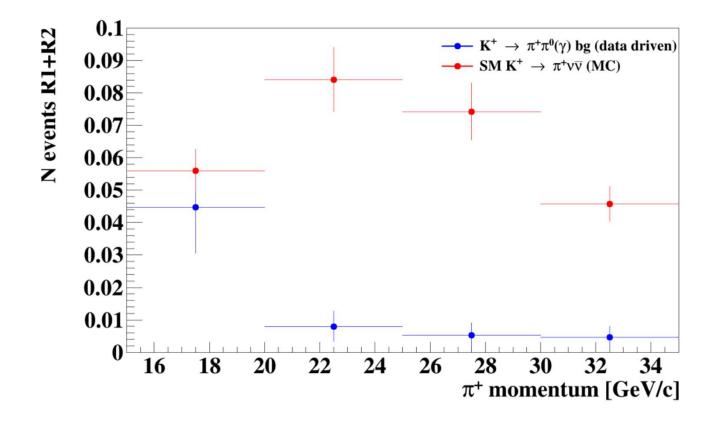
- Kinematic rejection independent from the photon one
- N($\pi^+\pi^0$): data events in $\pi^+\pi^0$ region after π_{VV} selection
- f^{kin} : tails, from $\pi^+\pi^0$ control sample selected on data tagging the π^0
- f^{kin}(R1+R2) ~ 10⁻³ (not radiative)
- Radiative: $\pi^0 + \gamma \rightarrow x30 \pi^0$ rejection in R2


$\pi^+ \pi^0$ (γ) background

 $N_{\pi\pi(\gamma)}^{expected} = 0.064 \pm 0.007_{stat} \pm 0.006_{syst} \ (< 10\% \ radiative)$

Expected control regions: 1.46 \pm 0.17 \rightarrow observed 1

$K^{\scriptscriptstyle +} \to \mu^+ \nu$ background



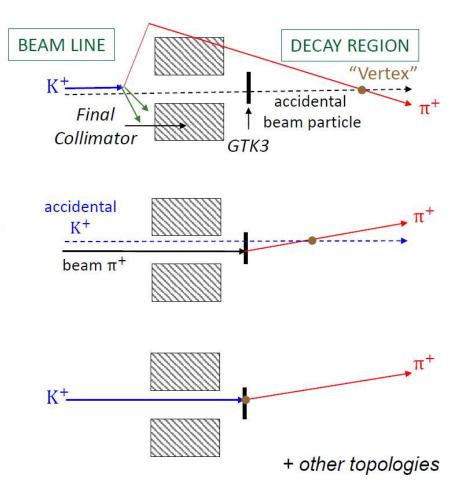
 $N_{\mu\nu}^{exp}(region) = N(\mu^+\nu)f^{kin}(region)$

- Kinematic rejection independent from PID
- N($\mu^+\nu$): data events in $\mu^+\nu$ region after $\pi\nu\nu$ selection
- f^{kin} : tails, from $\mu^+\nu$ control sample selected on data with μ^+ -ID in calorimeters
- $f^{kin}(R1) \sim 10^{-5} 10^{-3} [15,35] GeV$
- $f^{kin}(R2) \sim O(10^{-5})$
- Radiative included in f^{kin}

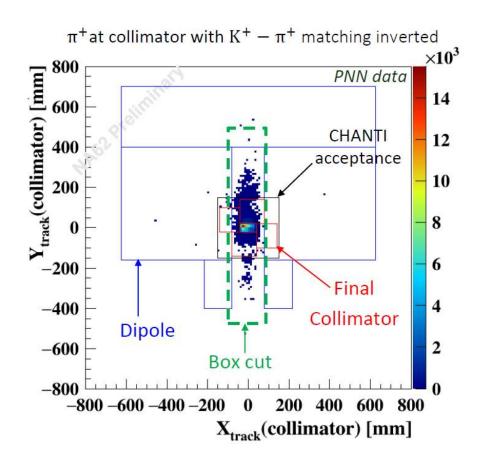
$K^{\scriptscriptstyle +} \to \mu^+ \nu$ background

$$N_{\mu\nu(\gamma)}^{expected} = 0.020 \pm 0.003_{stat} \pm 0.003_{syst}$$

Expected control regions: $1.02 \pm 0.16 \rightarrow \text{observed} 2$


$K^+ \rightarrow \pi^+ \pi^- e^+ v$ (K_{e4}) background

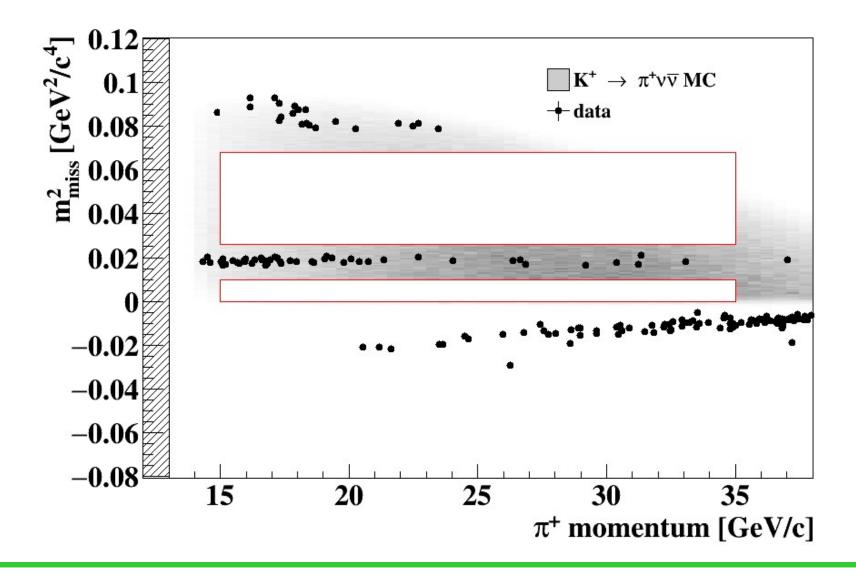
- Measured branching ratio: $4.247(24) \cdot 10^{-5}$
- Topology-correlated kinematics spanning Region 2
- MC-based background estimation, $4 \cdot 10^8$ events generated
- Validation of MC done with data using enriched $K^+ \rightarrow \pi^+\pi^-e^+\nu$ sample


 $N_{\pi\pi ev}^{expected} = 0.018^{+0.024}_{-0.017}|_{stat} \pm 0.009_{svst}$ $K^+ \rightarrow \pi^+ \pi^- e^+ \nu MC$ $K^+ \rightarrow \pi^+ \pi^- e^+ \nu$ - enriched sample 0.1210 m²_{miss} [GeV²/c⁴] Entries 0.1 • data $K^+ \rightarrow \pi^+\pi^-e^+\nu_e MC$ 0.080.06 3.5 1 0.02 10^{-1} -0.02-0.04-0.060.5 -0.080.03 15 20 25 30 35 0.04 0.05 0.06 0.07 m2miss [GeV2/c4] π^+ momentum [GeV/c]

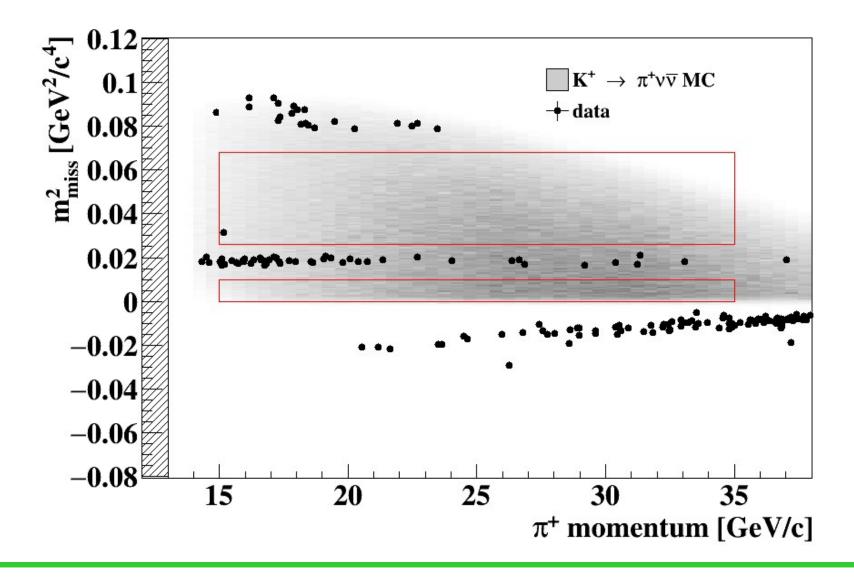
Upstream background

- K⁺ decays along the beam line
 - Only π^* going forward
 - Dependence on material along the beam, magnetic field
 - Match an accidental beam particle
- Beam π⁺ interactions in the GTK station
 - π^+ production
 - Match accidental K⁺
- K⁺ interactions in GTK station
 - π^+ production
 - Vertex mis-reconstructed

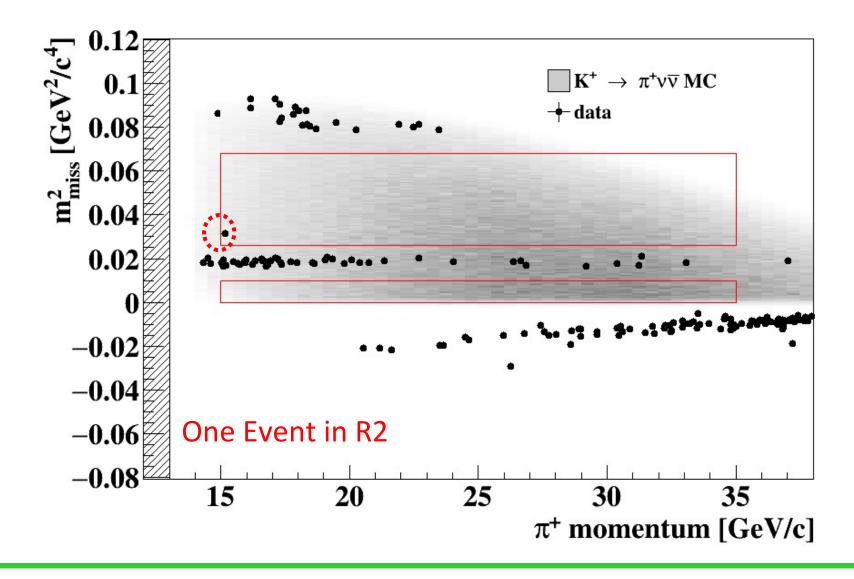
Upstream background


- Cuts to fight upstream background
 - $K^+ \pi^+$ matching
 - "Box cut" around π⁺ position at collimator
 - Z_{vertex}, CHANTI
- Background estimation
 - Fully data driven
 - Cuts inversion
 - Statistics limited in 2016

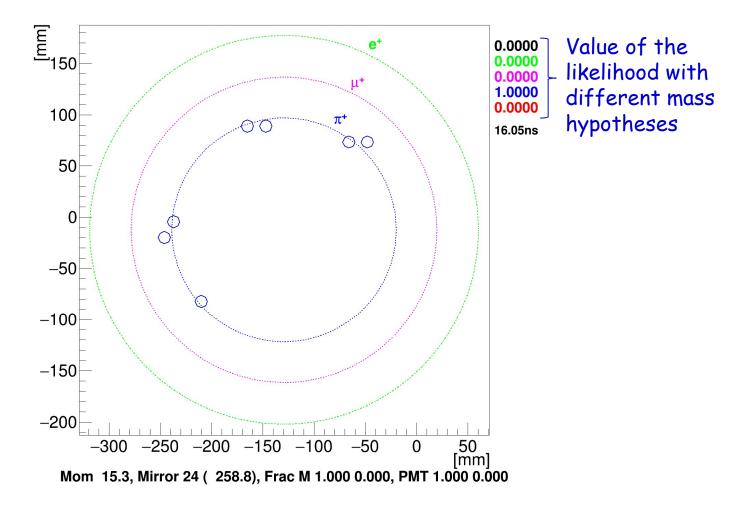
 $N_{upstream}^{exp} = 0.050^{+0090}_{-0.030}|_{stat}$


Background summary

Process	Expected events in R1+R2
$K \rightarrow \pi \nu \nu$ (SM)	0.267 ± 0.001 _{stat} ± 0.020 _{syst} ± 0.032 _{ext}
Total Background	0.15 ± 0.09 _{stat} ± 0.01 _{syst}
$K^{*} \to \pi^{+} \pi^{0} (\gamma)$	0.064 ± 0.007 _{stat} ± 0.006 _{syst}
$\mathbf{K}^{*} \rightarrow \mu^{+} \nu \; (\gamma)$	0.020 ± 0.003 _{stat} ± 0.003 _{syst}
$K^{+} \rightarrow \pi^{+}\pi^{-}e^{+}\nu$	$0.018^{+0.024}_{-0.017} _{stat} \pm 0.009_{syst}$
$K^{\scriptscriptstyle +} o \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle -}$	0.002 ± 0.001 _{stat} ± 0.002 _{syst}
Upstream background	0.050 ^{+0.090} -0.030


Result

Result



Result

The candidate in the RICH

Preliminary result

- Events Observed:
- SES $(3.15 \pm 0.01_{stat} \pm 0.24_{syst})^* 10^{-10}$

1

- Expected background $0.15 \pm 0.09_{stat} \pm 0.01_{syst}$
- BR($K \to \pi \nu \nu$) < 11*10⁻¹⁰ @ 90% CL
- BR($K \to \pi v v$) < 14*10⁻¹⁰ @ 95% CL

- Expected limit: BR($K \rightarrow \pi v v$) < 10*10⁻¹⁰ @ 95% CL
- For comparison: BR($K \to \pi \nu \nu$) < 2.8^{+4.4}-2.3*10⁻¹⁰ @ 68% CL
- BR($K \to \pi v v$)_{SM} = (0.84 ± 0.10)*10⁻¹⁰ SM prediction
- BR($K \rightarrow \pi \nu \nu$) = (1.73^{+1.15}_{-1.05})*10⁻¹⁰ BNL E787/E949, kaons at rest

Prospects on $K \rightarrow \pi \nu \nu$

- 2017 Data Processing ongoing
 - 20 times the presented statistics
 - Expect to reduce upstream background
 - Methods to improve signal efficiency under study
- 2018 data
 - Run going on smoothly
 - Further mitigation of the upstream background is expected
- Expect about 20 SM events from 2017+2018 data

Not only $\pi v \overline{v}$

- Standard kaon physics
 - ChPT studies: $K^+ \rightarrow \pi^+ \gamma \gamma$, $K^+ \rightarrow \pi^+ \pi^0 e^+ e^-$, $K_{\ell 4}$
 - Lepton universality: $R_{K}=\Gamma(K \rightarrow ev(\gamma))/\Gamma(K \rightarrow \mu v(\gamma))$
- Searches for lepton-flavor or -number violating decays
 - $K^{+} \rightarrow \pi^{+}\mu e$, $K^{+} \rightarrow \pi^{-}\mu^{+}e^{+}$, $K^{+} \rightarrow \pi^{-}\ell^{+}\ell^{+}$
- Search for heavy neutrinos
 - $K^{+} \rightarrow \ell^{+} v_{h}$ (inclusive)
 - v_h from upstream K, D decays with $v_h \rightarrow \pi \ell$
- Search for long-lived dark sector particles
 - Dark photon γ' produced in π/ρ decays in target with $\gamma' \rightarrow \ell^+ \ell^+$
 - Axion-like particle A^0 produced in target/beam dump, with $A^0 \rightarrow \gamma \gamma$
- π^0 decays
 - $\pi^0 \rightarrow \text{invisible}; \ \pi^0 \rightarrow 3\gamma, \ 4\gamma; \ \pi^0 \rightarrow \gamma'\gamma$

NA48: $K^{\pm} \rightarrow \pi^0 \ell^{\pm} \nu_{\ell}$

$K^{\pm} \rightarrow \pi^0 \ell^{\pm} \nu_{\ell}$ form factors

$$\frac{\mathrm{d}^2 \Gamma}{\mathrm{d} E_l \,\mathrm{d} E_\pi} \propto A f_+^2(t) + B f_+(t) f_-(t) + C f_-^2(t) \quad \text{(neglecting radiative effects), where:}$$

$$t = M_{l\nu}^{2} = (P_{K} - P_{\pi})^{2} = m_{K}^{2} + m_{\pi}^{2} - 2m_{K}E_{\pi}$$

$$E_{\pi}, E_{l}, E_{\nu} = \text{energies in the } K^{\pm} \text{ rest frame}$$

$$f_{-}(t) = (f_{+}(t) - f_{0}(t)) (m_{K}^{2} - m_{\pi}^{2}) / t$$

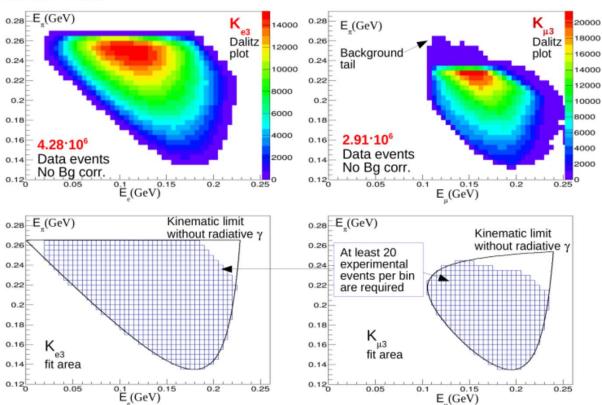
$$f_{0}(t), f_{+}(t) = \text{"scalar" and "vector" FF}$$

Ingredients for the determination of $|V_{us}|$

$$A = M_{K} [2E_{l}E_{\nu} - m_{K}(E_{\pi}^{\max} - E_{\pi})] + M_{l}^{2} \left[\frac{1}{4}(E_{\pi}^{\max} - E_{\pi}) - E_{\nu}\right]$$

$$B = M_{l}^{2} [E_{\nu} - \frac{1}{2}(E_{\pi}^{\max} - E_{\pi})] \text{ negligible for } K_{e3}$$

$$C = \frac{1}{4}M_{l}^{2}(E_{\pi}^{\max} - E_{\pi})4 \text{ negligible for } K_{e3}$$


FF parametrization	$f_+(t, \text{parameters})$	$f_0(t, \text{parameters})$
Quadratic (linear for $f_0(t)$)	$1 + \lambda'_{+}t/m_{\pi}^{2} + \lambda''_{+}(t/m_{\pi})^{2}$	$1 + \lambda_0' t/m_\pi^2$
Pole	$M_V^2/(M_V^2-t)$	$M_S^2/(M_S^2-t)$
Dispersive *	$\exp\left((\Lambda_+ + H(t))t/m_\pi^2\right)$	$\exp\left((\ln[C] - G(t))t/(m_K^2 - m_\pi^2)\right)$

^{*} B. Bernard, M. Oertel, E. Passemar, J. Stern, Phys.Rev.D80(2009) 034034

We use MC radiative decay generator of C. Gatti [Eur.Phys.J. C45(2006) 417-420] provided by the KLOE collaboration. It includes $f_0 = f_+ = 1 + \lambda' t/m_{\pi}^2$

Measured Dalitz plot and fit areas

Data sample: 3 days of NA48/2 special run taken in 2004

(5x5 MeV cells)

Results for the joint $K_{\ell 3}$ analysis

Quadratic parametrization (10-3)				Cor
	λ' ₊ (K _{I3})	λ" ₊ (K _{I3})	λ ₀ (K _{I3})	
Central values	23.35	1.73	14.90	λ'
Stat. error	0.75	0.29	0.55	λ
Syst. error	1.23	0.41	0.80	
Total error	1.44	0.50	0.97	

Correlation coefficients

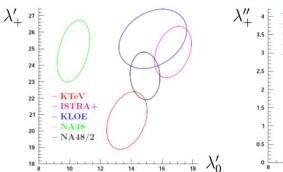
	λ" ₊ (K _{I3})	λ ₀ (K _{I3})
λ' ₊ (K _{I3})	-0.954	-0.076
λ" ₊ (K _{I3})		0.035

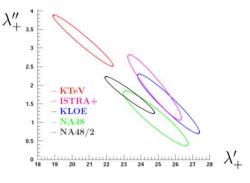
Results of the combined $K_{\ell 3}$ analysis

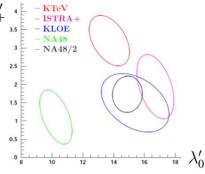
Separate $K_{\mu3}$ and K_{e3} analysis gave compatible results

Most precise results in the world

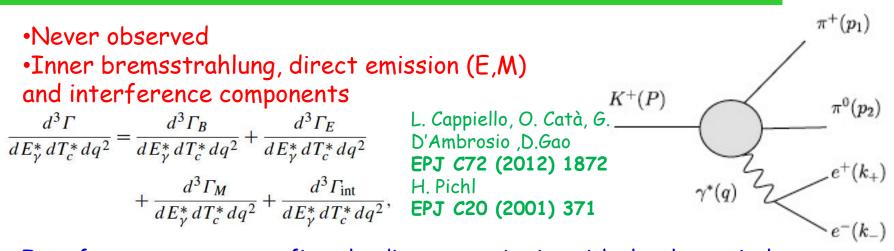
Pole parametrization (MeV)


	m _v (K _{I3})	m _{5.} (K ₁₃)	
Central values	894.3	1185.5	Correlation
Stat. error	3.2	16.6	-0.278
Syst. error	5.4	35.5	
Total error	6.3	39.2	


• Quadratic fit: $\rightarrow \lambda'_+, \ \lambda''_+, \ \lambda'_0$


- Parameter correlation (1σ ellipses)
- ► black ellipse = NA48/2
- comparison to other experiments

	Λ ₊ (K _{I3})	Ln[C] (K ₁₃)	
Central values	22.67	189.12	Correlation
Stat. error	0.18	4.91	-0.035
Syst. error	0.55	11.09	
Total error	0.58	12.13	



NA48: $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma^{*} \rightarrow \pi^{\pm} \pi^{0} e^{+} e^{-}$

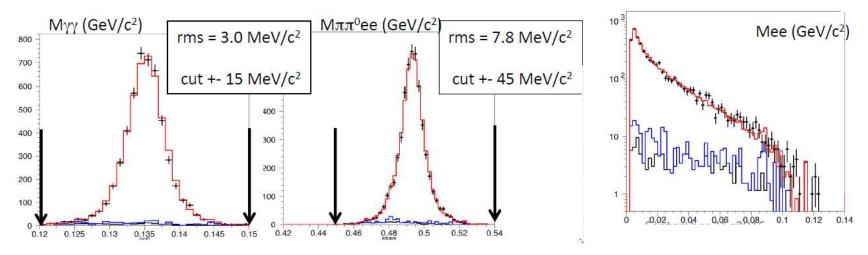
$K^{\pm} \longrightarrow \pi^{\pm} \pi^{0} \gamma^{*} \longrightarrow \pi^{\pm} \pi^{0} e^{+} e^{-}$ motivations

•Interference $\Gamma_{\rm B}$ $\Gamma_{\rm E}$ can confirm the discrepancy in sign with the theoretical prediction observed by NA48/2 in K[±] $\rightarrow \pi^{\pm}\pi^{0}\gamma_{EPJC 68 (2010) 75-87}$

•Magnetic interference is genuine $\pi\pi$ ee and can be used to extract the sign of the magnetic term Γ_M (impossible to extract in $\pi^{\pm}\pi^0\gamma$).

•P violating observables in the dilepton pair coupling can be used to access short distance physics using K^+ only (NA62)

•Charge asymmetry not contaminated by indirect CP violation (as in K⁰)


NA48/2 data from 2003 and 2004 runs

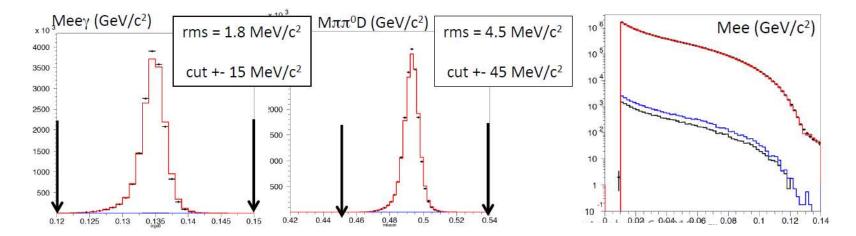
A clean signal sample

 $K^{\underline{\star}} \longrightarrow \pi^{\underline{\star}} \pi^0 e^{\underline{\star}} e^{\underline{}}$ signal dominated by

- IB, then DE (M) and INT(IB,E): 4 independent generations (IB, M, INT>0 and INT <0) with different acceptances (A(M) and A(BE) ~ 3 × A(IB))
- Radiative corrrections adding extra photon(s) emission using Photos

Backgrounds $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\pi^{0}{}_{D}(K_{3\pi D}): 159\pm 8 \text{ events} \quad K^{\pm} \rightarrow \pi^{\pm}\pi^{0}{}_{D}(\gamma)(K_{2\pi D}): 130\pm 24 \text{ events}$

A large normalization sample


Normalization with $K^{\pm} \rightarrow \pi^{\pm} \pi^{0}{}_{D}$; Several generators used

- $K^{\pm} \rightarrow \pi^{\pm} \pi^{0}$ generator code including 1 real photon emission Gao EPJ C 45 (2006)
- π^0_{D} decays including 1 extra photon emission Husek, Kampf, Novotny PRD 92 (2015)
- also π^0_D decays including extra photon(s) emission (Photos) Was et al CPC 79 (1994)

Backgrounds

R. Fantechi - QCD@Work - June 27th 2018

M_{ee}> 10 MeV/c², low sensitivity to radiative correction modeling 39

Branching ratio measurement

$$BR(\pi\pi ee) = \frac{(N_{S} - N_{BS}) \cdot A_{N} \cdot \varepsilon_{L1N} \cdot \varepsilon_{L2N}}{(N_{N} - N_{BN}) \cdot A_{S} \cdot \varepsilon_{L1S} \cdot \varepsilon_{L2S}} \cdot BR_{Norm}$$

We have computed a model dependent branching ratio using a total acceptance in which the weights of the various components have been taken from Cappiello et al.

 $A_{S} = \frac{Acc(IB) + Frac(DE)_{Th} \cdot Acc(DE) + Frac(INT)_{Th} \cdot Acc(INT)}{1 + Frac(DE)_{Th} + Frac(INT)_{Th}}$

Frac(DE)=1/71 and Frac(INT)=1/128 computed in Cappiello et al. using inputs from the NA48 measurement of $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\gamma$

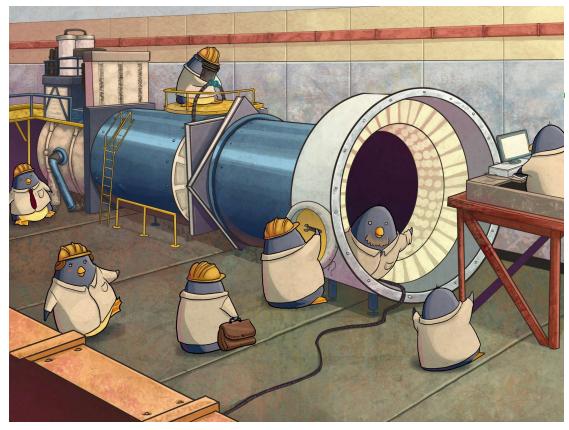
N _s	5076
N _{BS}	289
Acceptance A _s	(0.666±0.001)%
L1 Trigger Efficiency (ϵ_{L1S})	(99.73±0.01)%
L2 Trigger efficiency (ϵ_{L25})	(99.46±0.02)%

N _N	16774613
N _{NS}	25517
Acceptance A _N	(4.083±0.002)%
L1 Trigger Efficiency (ϵ_{L1N})	(99.767±0.003)%
L2 Trigger efficiency (ϵ_{L2N})	(98.548±0.007)%

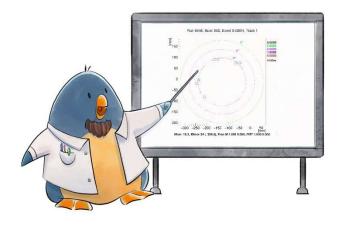
Branching ratio measurement

Theoretical predictions:

No Radiative corrections, no isospin corrections $BR= 4.29 \cdot 10^{-6} (*)$


No Radiative corrections, with isospin corrections BR= $4.19 \cdot 10^{-6}$ (**)

 $BR_{\pi\pi ee}^{NA48/2} = (4.22 \pm 0.06_{stat} \pm 0.04_{syst} \pm 0.13_{ext}) \cdot 10^{-6}$ Dominated by the external error on BR(π^0_D)


(*) EPC C72 (2012)(**) private communications from the authors

Conclusions

- NA62 is taking data with the complete detector since 2016
- A preliminary result from the 2016 data sample has been obtained
 - 1 event found with an expected background of 0.15
 - An upper limit to the branching ratio has been obtained
- Results about $K_{\ell 3}$ form factors from NA48/2 have been presented
 - Agreement with previous measurements and the most precise in the world
- First observation of $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}e^{+}e^{-}$ from NA48/2
 - Precise measurement of the branching ratio
 - Good agreement with the theoretical predictions
 - Close to the final results

Artist's view of the past installation activity...

Thank you!

... and of the current analysis work...