

Muon commissioning and Exclusive B production at CMS with the first LHC data

Silvia Taroni INFN Milano Bicocca

On the behalf of the CMS collaboration

Outline

- Introduction
 - CMS detector
 - Muon detection in CMS
- Cosmic Muons
- Muons in collisions
- Heavy flavour physics
 - $B \rightarrow J/\psi K$

The CMS Detector

Muon reconstruction in CMS

- Redundant muon measurement
 - Muon system: DT and RPC (barrel) and CSC and RPC (endcap)
 - Inner tracker
- Large pseudorapidity coverage $|\eta| < 2.4$
- Excellent muon resolution:
 - Maching muon chamber tracker information
 - High magnetic field

Muon study with cosmic ray

- Muon reconstruction has been widely tested with the data sample of cosmic muons (CRAFT08 data)
 - Selections are applied to extract a collision-like sample
 - The distance between point of closest approach of the reference track to the beam line and the nominal interaction point has to be:

r < 4 cm in the transverse plane

|z| < 10 cm along the beam line

Efficient reconstruction and identification

6

 No evidence of inefficiency in the barrel region (|η|<0.8) and in the whole p_τ spectrum

p_{T} resolution

• The transverse momentum resolution has been measured by the width of the distribution of the relative residuals:

$$R(q/p_T) = \frac{(q/p_T)^{upper} - (q/p_T)^{lower}}{\sqrt{2}(q/p_T)^{lower}}$$

where upper and lower stay for the upper and lower halves of the detector

- In the region below 200GeV/c, the resolution is dominated by multiple scattering in the tracker. No improvement including muon hits.
- High p_T: currently global muons not as good as tracker tracks, but including, if necessary, the first muon station information (track by track choice) the resolution can be improved

CMS

Charge ratio of muons from cosmic rays

- CMS measured the ratio of positive to negative muon fluxes from cosmic rays
- Data acquisition at ground level (MTCC2006) and underground (CRAFT08)
- Muon momentum range 5GeV/c 1 TeV/c
- CMS measurement is in agreement with models and previous measurements (last and most precise result before CMS is from MINOS)
- The ratio is indipendent from the muon momentum below 100 GeV/c

$$R\left(\frac{\mu^{+}}{\mu^{-}}\right) = 1.2766 \pm 0.0032 \,(stat.) \pm 0.0032 \,(syst.)$$

Muons in collisions: three classes of muons

- Muons from collisions are divided into 3 classes
 - **StandAlone Muons:** Their reconstruction only uses the muon stations
 - p_{min} ~3 GeV/c (necessary to cross the whole half detector)
 - Global Muons: Their reconstruction starts from standalone muons; then, the muon track is matched with a track reconstructed in the silicon (pixel and strip) tracker.
 - **Tracker Muons:** Their reconstruction starts with tracks in the tracker which are then matched to segments in the muon stations (one or more).
 - The corresponding momentum cut-off is lower than for global muons (~1GeV/c), but these tracker muons are not most difficult to trigger on.
- Tracker muons are necessary to enhance the reconstruction efficiency of low momentum muons.

Muons in collisions: trigger

10

• Different muon triggers for different LHC luminosity

 Single muon trigger 	10 ²⁹ -10 ³⁰ cm ⁻² s ⁻¹
 Ad Hoc intermediate solutions: 	
• Once a muon is triggered, another track in the tracker is selected and the compatibility with a resonance $(J/\psi, Y)$ is checked	
 Single muon HLT but with a double muon Level-1 seed 	10 ³¹ cm ⁻² s ⁻¹
– Single-high p_{T} or doublemuon trigger	> ~ 10 ³² cm ⁻² s ⁻¹

- During the first runs $(\mathscr{L}{<}{\sim}10^{\scriptscriptstyle 28}~\text{cm}^{\scriptscriptstyle 2}\text{s}^{\scriptscriptstyle -1})$ a minimum bias trigger is used

Muons in collisions: events at 0.9 and 2.36 TeV

 J/ψ candidate in the endcap:

- p_T(μ₁) = 3.6 GeV/c
- p_T(μ₂) = 2.6 GeV/c
- M(μμ)= 3.03 GeV/c²

Entries/(0.005cm)

10³

10²

muons from heavy flavours muons from light hadrons

hadron punch-through

CMS preliminary, √s = 7 TeV

-int = 0.2 nb⁻¹

- Data-MC comparisons for a few basic kinematic distributions has been performed using minimum bias events at 7 TeV
- A good agreement results for both global and tracker muons

Entries/0.2

Muons in collisions: $J/\psi \rightarrow \mu\mu$ at 7 TeV

Selection:

- dataset: 15 nb⁻¹
- acceptance of the muons: $|\eta| < 2.4$
 - $p_{T} > 3.3 \text{ GeV}$ if $|\eta| < 1.3$
 - p > 2.9 GeV if 1.3 <|η|< 2.2
 - pT > 0.8 GeV if $|\eta|$ > 2.2
- Tracker muons:
 - χ^2 /ndof < 4.0
 - |d₀|< 3.0 cm, |dz| < 15.0 cm</p>
 - number of valid hits (pixel + strips) > 11
 - number of pixel layers with hits>= 2
- Global muons:
 - χ^2 /ndof (global fit)< 20.0
 - number of valid muon hits > 0
 - TM passing TMLastStationAngTight selector
- Secondary vertex $P(X^2) > 0.1\%$

Fit:

- Extended ML fit with exponential for the background + a CrystalBall function for the signal (radiative tail)
- Shape parameter of the exponential fixed from a fit to the side bands
- All the parameters in the CrystalBall function are free

Heavy flavour physics at CMS

CMS

- Heavy flavours will be abundantly produced at the LHC.
- At this starting phase, part of the CMS collaboration is investigating the heavy flavour sector.
 - Most of the analyses are driven by the J/ $\psi \rightarrow \mu \mu$
- Interesting for physics
 - SM measurement
 - BSM searches
 - and for commissioning
 - Detector
 - Trigger
- This study is also important for the background determination in other searches

Heavy flavour physics at CMS - II

- Rich program with few pb⁻¹ of integrated luminosity
 - O(0.1) pb⁻¹ Exclusive D signal
 - O(1) pb⁻¹ J/ ψ production cross section / polarization Inclusive b and Y(nS)
 - O(10) pb⁻¹ bb correlations, exclusive B
 - $O(100)\text{pb}^{-1}$ UL($B_s^0 \rightarrow \mu^- \mu^+$), exclusive B_s^0 decay
- Keep in mind the LHC plans for luminosity (continuously updating):
 - O(100)pb⁻¹ of integrated luminosity delivered at the end of the 2010
 - O(1)fb⁻¹ of integrated luminosity delivered at the end of the 2011 (end of the long run)

Luminosity delivered up to now

 At the moment, tens of nb⁻¹ (7 TeV collisions) have been delivered by LHC and recorded by CMS

CMS: Integrated Luminosity 2010

Exclusive B: $B^+ \rightarrow J/\psi K^+$ and $B^0 \rightarrow J/\psi K^{0*}$

- CMS is going to measure the differential cross section and the lifetime ratio using the exclusive decays $B^+ \rightarrow J/\psi K^+$ and $B^0 \rightarrow J/\psi K^{0*}$, with $J/\psi \rightarrow \mu \mu$ and $K^{0*} \rightarrow K^+ \pi^-$
 - BR $\sim 10^{-3}$ but systematics reduced w.r.t inclusive B \rightarrow J/ ψ X
 - Background processes (inclusive b and prompt J/ ψ) are easily identified using the invariant mass M_B and the proper decay length of the reconstructed B candidate
- In addition, it is a test of the CMS detector performances because
 - Both decay modes are well known, deeply studied at the Bfactories
 - BR for each mode known with a precision better than 5%

$B^+ \rightarrow J/\psi K^+$ and $B^0 \rightarrow J/\psi K^{0*}$ MC study

- A MC study (at 10 TeV) has shown the feasibility.
- Selection:
 - Dimuon trigger (p_{T} >3GeV)
 - J/ ψ reconstruction from 2 μ
 - opposite charge
 - Vertexing
 - Tracker μ
 - $M(\mu\mu) = M(J/\psi) \pm 150 \text{ MeV/c}^2$
 - K^{0*} reconstruction from 2 tracks
 - Opposite charge
 - p_⊤(track) > 0.5 GeV/c
 - Not muons
 - N_{HIT} > 3
 - $\chi^2/ndof < 5$
 - The combination with the resulting mass closest to the K π nominal value and within 120 GeV/c² from it, is chosen

- K track:
 - $p_{_{T}} > 0.8 \text{ GeV/c}$
 - N_{HITS} >3
 - χ^2 /ndof < 5
 - Not a muon
- B candidate reconstruction:
 - Kinematic fit of J/ψ + track(s)
 - $M(\mu\mu)$ constrained to the J/ ψ mass
 - $M(K\pi)$ constrained to the K*⁰ mass
 - 4.95 < M(B) < 5.55 GeV/c²

 $B^+ \rightarrow J/\psi K^+$ and $B^0 \rightarrow J/\psi K^{0*} MC$ study - II

- ~1750 B⁺ and ~900 B⁰ events are reconstructed with 10 pb⁻¹ of integrated luminosity
- The lifetime is calculated from the proper decay length in the transverse plane

$$ct = \frac{M_B}{P_T^B} \cdot L_{xy}$$

- Yield and lifetime: simultaneous fit to mass and proper decay length distributions for the whole sample with $p_{-}(B)>9GeV$
- Cross-section: yield fit for different p_{τ} bins, fixing the lifetime

Yield and lifetime full p₋ spectrum (MC study)

current PDG value $B^{+}/B^{0} = 1.071 \pm 0.009$

Cross section (MC study)

• Cross-section: yield fit for p_{τ} bins, fixing the lifetime

- Statistical precision < 10%.
- Systematic dominated by the luminosity uncertainty (~10%)

Other B analyses

- Ongoing analysis:
 - Azimuthal correlation in $b\overline{b}$ production (PAS BPH-08-004)
 - Study performed with L= 50pb⁻¹, and \sqrt{s} = 10 TeV.
 - B-hadron fraction in J/psi decays (PAS BPH-07-002)
 - Study performed with L=3pb⁻¹, and \sqrt{s} =14 TeV.
- Lot of ideas (under study) for other exclusive B analyses:
 - − Y(nS), $B_s \rightarrow J/\psi \phi$, UL $B_s \rightarrow \mu \mu$, $B^0 \rightarrow J/\psi K_s^0$, Open-beauty production cross section from μ +jets, $B_c \rightarrow J/\psi \mu \nu$, $B_c \rightarrow J/\psi \pi$

B in 7 TeV collisions

• The statistics is too low to fit a mass peak but we are recording interesting events....

Conclusions

- CMS is now taking data from collisions at 7 TeV
- It has a redundant muon system that efficiently identifies and reconstructs muons.
 - It was widely tested during the cosmic data taking and continuosly monitored using a well-know resonance $(J/\psi \rightarrow \mu\mu)$
- Thanks to its high performances with muons CMS can perform interesting measurements in the heavy flavour sector.
 - MC studies has shown the feasibility of these measurements with few pb⁻¹

... we are eager to analyse data