

Study of the decays of the Higgs boson to boson pairs at Run-II with the ATLAS experiment

Marco Sessa CERN, Università & INFN Roma Tre

> <u>IFAE 2017</u> <u>Trieste, 19 Aprile 2017</u>

Outline

- Motivations for Higgs searches
- Run-2: summary results for Higgs decays to boson pairs
 - H→ZZ*→4ℓ
 - H→WW*
 - H→үү
- Combined measurements from $H \rightarrow ZZ^* \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$
- Recent results from CMS
- Conclusions and prospects

The Higgs boson at LHC

Higgs production at LHC

Production cross-sections

LHC Higgs Cross Section Working Group

Higgs branching-ratios for vector boson decays:

- BR(H→WW*) ~ 22%
- BR(H->ZZ*) ~ 3 %
- BR(H->γγ) ~ 0.23%

April 19th, 2017

Main motivations for Higgs searches

- The Higgs boson plays an important role in the SM: it provides mass to the elementary
- particles, through the electroweak spontaneous symmetry breaking (EWSB)
- It is a fantastic new tool to test the Standard Model of particle physics
- Several reasons to study the Higgs boson at 13 TeV:
 - Improving of the precision on the Higgs mass
 - Couplings with SM particles
 - Cross-section measurements
 - Spin-parity tests

April 19th, 2017

Marco Sessa - IFAE 2017

H→WW^{*} (Run-2)

ATLAS-CONF-2016-112

- Integrated luminosity: 5.8 fb⁻¹
- Analysis restricted to two distinctive production modes
- Background normalizations estimated from data using CR
 CRs and SRs fit together to extract the NFs and signal strength
 - VBF: eµ + 2 jets
 - Different lepton flavours to reject Drell-Yan
 - BDT used to select VBF Higgs topology

- WH: 3*l* events
- High MET, ≤ 1 jets
- two SR categories, split according to the presence of same flavor OS leptons

April 19th, 2017

Marco Sessa - IFAE 2017

H→WW^{*} (Run-1)

arXiv:1412.2641v2

- Integrated luminosity: ~25 fb⁻¹(7 and 8 TeV)
- First observation of the $H \rightarrow WW^*$ decay (ggF, VBF)
 - Obs. (exp.) significance: 6.2 σ (5.8 σ)
- Evidence for the VBF production mode
 - Obs. significance: 3.2 σ

μ	$= 1.09 \stackrel{+0.23}{_{-0.21}}$
μ_{ggF}	$= 1.02 \stackrel{+0.29}{_{-0.26}}$
$\mu_{\rm VBF}$	$= 1.27 \stackrel{+0.53}{_{-0.45}}$

- Full combination among ggF, VBF, WH and ZH modes
 - Obs. significance 6.5 σ
 - Exp. significance 5.9 σ

fb

- Dataset: 14.8 fb⁻¹ @ 13 TeV
- High resolution on the Higgs mass, good S/B (~2 in mass window)
- Non-resonant ZZ* background is the only relevant background (irreducible background estimated from MC simulations)
- Fiducial cross-section extracted from events in the mass region
 115 < m4l < 130 GeV
- Cross-section: $\sigma_{\text{fid,sum}}^{4\ell} = 4.48_{-0.89}^{+1.01} \text{ fb}$

SM:
$$\sigma_{\rm fid,SM}^{4\ell} = 3.07^{+0.21}_{-0.25}$$

Per decay	/ channel:	

Final state	measured $\sigma_{\rm fid}$ [fb]	$\sigma_{ m fid,SM}$ [fb]
4μ	$1.28 \substack{+0.48 \\ -0.40}$	$0.93 \ ^{+0.06}_{-0.08}$
4e	$0.81 \ {}^{+0.51}_{-0.38}$	$0.73 \ ^{+0.05}_{-0.06}$
$2\mu 2e$	$1.29 \ {}^{+0.58}_{-0.46}$	$0.67 \ ^{+0.04}_{-0.04}$
2 <i>e</i> 2µ	$1.10 \substack{+0.49 \\ -0.40}$	$0.76 \ ^{+0.05}_{-0.06}$

April 19th, 2017

• Event categorization (based on BDTs) applied to distinguish among different production modes:

• Observed and expected cross-section times branching ratio for different production mechanisms:

$$\begin{split} \sigma_{\mathrm{ggF}+b\bar{b}H+t\bar{t}H} \cdot \mathcal{B}(H \to ZZ^*) &= 1.80^{+0.49}_{-0.44} \text{ pb} \\ \sigma_{\mathrm{VBF}} \cdot \mathcal{B}(H \to ZZ^*) &= 0.37^{+0.28}_{-0.21} \text{ pb} \\ \sigma_{\mathrm{VH}} \cdot \mathcal{B}(H \to ZZ^*) &= 0^{+0.15} \text{ pb} \end{split} \qquad \begin{aligned} \sigma_{\mathrm{SM,VBF}} \cdot \mathcal{B}(H \to ZZ^*) &= 1.31 \pm 0.07 \text{ pb} \\ \sigma_{\mathrm{SM,VBF}} \cdot \mathcal{B}(H \to ZZ^*) &= 0.100 \pm 0.003 \text{ pb} \\ \sigma_{\mathrm{SM,VH}} \cdot \mathcal{B}(H \to ZZ^*) &= 0.059 \pm 0.002 \text{ pb} \end{aligned}$$

H->V

Dataset: 13.3 fb⁻¹@ 13 TeV •

 $\sigma_{\rm fid} = 43.2 \pm 14.9 \,({\rm stat.}) \pm 4.9 \,({\rm syst.})$

- Clean experimental signature and good invariant mass resolution
- Search performed exploiting all production mode categories
- Signal yield extracted from a simultaneous signal+background fit of the m_{vv} distribution
- The non-resonant di-photon continuum background ($\gamma\gamma$, γ j, jj) is estimated directly from data using dedicated Control Regions (reversing isolation and ID requirements of the photons)
- Signal strength: μ = 0.85 ± 0.22 (obs. 4.7 σ , exp. 5.4)

Compatible with Run-1 value of μ = 1.17 ± 0.28

April 19th, 2017

$H \rightarrow ZZ^* \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$ combination

ATLAS-CONF-2016-081

- Full combination *@* 13 TeV: 13.3 fb⁻¹ for $H \rightarrow \gamma \gamma$ and 14.8 fb⁻¹ for $H \rightarrow ZZ^* \rightarrow 4\ell$
- Total cross-section measurement: no attempt is made to disentangle the different Higgs boson production modes
- Global signal strength: μ = 1.13 ± 0.18
 - Higgs confirmed @ 13 TeV !

σ _{pp→H} [pb]	100	$ATLA$ $A H \rightarrow 2$ $COMP$	S Prelimi $\gamma \phi H \rightarrow Z$ b. data s	nary Z*→4 <i>l</i> yst. unc.	— σ _{pp-} QCI Tot.	\rightarrow_H $m_H = 1$ D scale unc uncert. (sc	25.09 GeV ertainty ale ⊕ PDF+α	·····	
	60								
	40		↓ ↑					ļ	
	20	_		V V V	<u>s</u> = 7 TeV, <u>s</u> = 8 TeV, <u>s</u> = 13 TeV	4.5 fb ⁻¹ 20.3 fb ⁻¹ , 13.3 fb ⁻¹ (γγ), 14.8 f	b⁻¹ (<i>ZZ</i> *)	
	L	7	8	9	10	11	12	13 √ <i>s</i> [Te	

Total pp → H+X cross sections measured at different centre-of-mass energies compared to Standard Model predictions at up to N3LO in QCD

Decay channel	Total cross section $(pp \rightarrow H + X)$					
	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$	$\sqrt{s} = 13 \text{ TeV}$			
$H ightarrow \gamma \gamma$	35 ⁺¹³ ₋₁₂ pb	30.5 ^{+7.5} _{-7.4} pb	37 ⁺¹⁴ ₋₁₃ pb			
$H \to Z Z^* \to 4\ell$	33 ⁺²¹ ₋₁₆ pb	37 <u>+</u> 9 pb	81 ⁺¹⁸ ₋₁₆ pb			
Combination	34 ± 10 (stat.) $^{+4}_{-2}$ (syst.) pb	33.3 ^{+5.5} _{-5.3} (stat.) ^{+1.7} _{-1.3} (syst.) pb	59.0 ^{+9.7} _{-9.2} (stat.) ^{+4.4} _{-3.5} (syst.) pb			
SM predictions [7]	19.2 ± 0.9 pb	24.5 ± 1.1 pb	55.5 ^{+2.4} _{-3.4} pb			

ttH in multilepton final states

ATLAS-CONF-2016-058

- ttH channels sensitive to H-Top Yukawa coupling
- Benefit at 13 TeV: σ (13 TeV) = 3.9 x σ (8 TeV)
- Results already limited by the systematic uncertainties!
- Several signal regions, according to the lepton multiplicity and flavour composition
- Multilepton final states ensure small background
- Sensitive to additional tt+W/Z backgrounds (very hard to control with data)
- Obs. significance: 2.2 σ

	41	31	12tau	ee5j	em5j	mm5j
$H \rightarrow WW$	72%	74%	46%	76%	77%	79%
$H \rightarrow ZZ$	9%	4%	2%	2%	3%	3%
H ightarrow au au	18%	20%	51%	17%	17%	17%
$H \rightarrow bb$	<1%	1%	1%	4%	3%	1%
$H \rightarrow \mu \mu$	2%	1%	< 1%	<1%	<1%	< 1%
$H \rightarrow other$	<1%	<1%	< 1%	<1%	<1%	< 1%

April 19th, 2017

<u>See S. Biondi's talk</u>

Run-1: mass and couplings

- Run-1 gave us one of the biggest discoveries in HEP
- The best available measurements on Higgs mass and couplings come from ATLAS+CMS Run-1 combination
- Mass measurement: combination of $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4l$
 - Dominant sources of systematic uncertainty from calibrations, energy scale and energy resolution
- Vector and fermion coupling modifiers have been tested using different Higgs decays modes
 - Measurements in good agreement with the SM prediction

PhysRevLett.114.191803 JHEP08(2016)045

April 19th, 2017

Marco Sessa - IFAE 2017

Summary from CMS

CMS PAS HIG-16-041

- 4-lepton analysis with ~ 36 fb⁻¹ at 13 TeV
- Events classified into mutually exclusive categories, related to the production mechanisms
- Combination: $\mu = 1.05^{+0.19}_{-0.17} = 1.05^{+0.15}_{-0.14}$ (stat.) $^{+0.11}_{-0.09}$ (sys.)
- New mass measurement presented by CMS collaboration at Moriond EW 2017
- $m_H = 125.26 \pm 0.20 \text{ (stat.)} \pm 0.08 \text{ (syst.)} \text{ GeV}$
 - Syst. unc. mainly dominated by lepton momentum scale

 Measurement of the fiducial cross sections at 7, 8 and 13 TeV, using H→ZZ^{*}→4l and H→γγ channels

Conclusions and prospects

- Run-2 data used to study h(125) production and improve our understanding of the Standard Model
- Higgs decays to vector bosons used for precision tests on production rates, mass and coupling measurements
- The direct measurement of the Higgs coupling to Top quark (ttH) is one of the main challenges for ATLAS Run-2
- New results expected for the summer conferences with ~ 36 fb⁻¹
 - Don't forget about H→fermions and BSM Higgs results !

Back-up slides

H→WW* (VBF)

ATLAS-CONF-2016-112

Category	SR1	SR2	Top CR	Z+jets CR
VBF Other Higgs	9.3 ± 3.6 8.0 ± 4.0	5.1 ± 1.8 0.7 ± 0.4	1.7 ± 0.6 1.1 ± 0.2	1.1 ± 0.4 1.2 ± 0.0
WW Other VV Top quark W+jets Z+jets	$\begin{array}{rrrr} 13.0 \pm & 8.0 \\ 6.6 \pm & 2.6 \\ 42.2 \pm & 7.6 \\ 24.3 \pm & 9.2 \\ 18.0 \pm & 9.9 \end{array}$	$\begin{array}{c} 0.4 \pm 0.2 \\ 0.2 \pm 0.1 \\ 0.9 \pm 0.7 \\ 1.2 \pm 0.7 \\ 0.1 \pm 0.1 \end{array}$	$\begin{array}{rrrr} 1.4 \pm & 0.5 \\ 0.2 \pm & 0.0 \\ 186 & \pm 17 \\ 8.8 \pm & 4.0 \\ 1.3 \pm & 1.0 \end{array}$	$\begin{array}{rrrr} 2.0 \pm & 0.9 \\ 0.8 \pm & 0.2 \\ 3.6 \pm & 1.6 \\ 4.4 \pm & 2.2 \\ 27 & \pm 10 \end{array}$
Total background Observed	$ \begin{array}{r} 115 \pm 13 \\ 120 \end{array} $	3.5 ± 1.9 9	$ \begin{array}{r} 199 \\ 202 \end{array} \pm 17 $	$\begin{array}{rrr} 38.8 \pm & 9.8 \\ 41 \end{array}$

$H \rightarrow WW^*$ systematics (VBF and WH)

ATLAS-CONF-2016-112

Source	$\Delta \mu_{\rm VBF}/\mu_{\rm VBF}$ [%]	Source	$\Delta \mu_{WH}/\mu_{WH}$ [%]
Statistical	+60 / -50	Statistical	+120 / -100
Fake factor, sample composition	+18/-15	MC statistical	+60 / -70
MC statistical	±15	Pile-up	+22/-26
VBF generator	+14 / -5	Jet energy resolution	+22/-23
WW generator	+11/-7	Top-quark generator	+17/-20
QCD scale for ggF signal for $N_{\text{jet}} \ge 3$	+8 / -7	<i>b</i> -tagging	+10/-11
Jet energy resolution	+8 / -7	Top-quark PS/UE	+7/-8
<i>b</i> -tagging	+8 / -6	JES flavour comp.	+8/-5
Pile-up	+8 / -6	JES η intercalibration	+7/-6
QCD scale for ggF signal for $N_{\text{iet}} \ge 2$	±6	$WZ/W\gamma^*$ generator	+7/-6
JES flavour composition	+6 / -4	Top-quark QCD scales	+6/-7
WW renormalisation scale	±5	$WZ/W\gamma^*$ resum. scale	±5
Total systematic	+33/-26	Total systematic	+70/-80
Total uncertainty	+70 / -50	Total uncertainty	+140/-130

$H \rightarrow ZZ \rightarrow 4\ell$ (SR selections)

ATLAS-CONF-2016-079

Lepton definition				
Muons: $p_{\rm T} > 5$ GeV,	$ \eta < 2.7$ Electrons: $p_{\rm T} > 7 {\rm GeV}, \eta < 2.47$			
	Pairing			
Leading pair:	SFOS lepton pair with smallest $ m_Z - m_{\ell\ell} $			
Sub-leading pair: Remaining SFOS lepton pair with smallest $ m_Z - m_e $				
	Event selection			
Lepton kinematics:	Leading leptons $p_T > 20, 15, 10 \text{ GeV}$			
Mass requirements:	$50 < m_{12} < 106 \text{ GeV}; 12 < m_{34} < 115 \text{ GeV}$			
Lepton separation:	$\Delta R(\ell_i, \ell_j) > 0.1(0.2)$ for same(opposite)-flavour leptons			
J/ψ veto:	$m(\ell_i, \ell_j) > 5$ GeV for all SFOS lepton pairs			
Mass window:	$115 < m_{4\ell} < 130 \text{ GeV}$			

 $H \rightarrow$

ggF systematic

CMS PAS HIG-16-041

Higgs boson width (CMS)

 Measurement of the Higgs boson width using on-shell production in the range 105 < m_{4l} < 140 GeV

Parameter	$m_{4\ell}$ range	Expected	Observed
$\Gamma_{\rm H}$ (GeV)	[105, 140]	$0.00^{+0.75}_{-0.00} \ [0.00, 1.60]$	$0.00^{+0.41}_{-0.00} \ [0.00, 1.10]$

- Main uncertainty from the four-lepton mass resolution
- Γ_H < 1.10 GeV at 95% C.L.

$H \rightarrow \gamma \gamma$ and $H \rightarrow WW^*$ (CMS)

CMS PAS HIG-16-020

CMS PAS HIG-15-003

- Di-photon invariant mass spectrum
- The maximum observed significance is 6.1 σ at 126 GeV
- Best fit µ = 0.95 ± 0.20

- Target: ggF production, H→WW^{*}→lvlv
- Leptons with different flavour (e and μ), O or 1 jet
- Integrated luminosity: 2.3 fb⁻¹
- Best fit µ = 0.3 ± 0.5
- Observed (expected) significance: 0.7 σ (2.0 σ)

Couplings with SM particles

- In SM, coupling of Higgs to fermions \propto mf and for massive weak bosons \propto mV^2
- Good agreement with expectation from SM across wide particle mass range

Run-1: mass measurement

CMS-HIG-14-042 ATLAS-HIGG-2014-14

Run-1: mass measurement

CMS-HIG-14-042 ATLAS-HIGG-2014-14

	Uncertainty in ATLAS		Uncertai	Uncertainty in CMS		tainty in
	results [GeV]:		result	results [GeV]:		result [GeV]:
	observed	observed (expected)		observed (expected)		(expected)
	$H \rightarrow \gamma \gamma$	$H \rightarrow ZZ \rightarrow 4\ell$	$H \rightarrow \gamma \gamma$	$H \rightarrow ZZ \rightarrow 4\ell$	ATLAS	CMS
Scale uncertainties:						
ATLAS ECAL non-linearity /						
CMS photon non-linearity	0.14 (0.16)	-	0.10 (0.13)	-	0.02 (0.04)	0.05 (0.06)
Material in front of ECAL	0.15 (0.13)	-	0.07 (0.07)	-	0.03 (0.03)	0.04 (0.03)
ECAL longitudinal response	0.12 (0.13)	-	0.02 (0.01)	-	0.02 (0.03)	0.01 (0.01)
ECAL lateral shower shape	0.09 (0.08)	-	0.06 (0.06)	-	0.02 (0.02)	0.03 (0.03)
Photon energy resolution	0.03 (0.01)	-	0.01 (<0.01)	-	0.02 (<0.01)	< 0.01 (< 0.01)
ATLAS $H \rightarrow \gamma \gamma$ vertex & conversion	0.05 (0.05)	-	-	-	0.01 (0.01)	-
reconstruction						
$Z \rightarrow ee$ calibration	0.05 (0.04)	0.03 (0.02)	0.05 (0.05)	-	0.02 (0.01)	0.02 (0.02)
CMS electron energy scale & resolution	-	-	-	0.12 (0.09)	-	0.03 (0.02)
Muon momentum scale & resolution	-	0.03 (0.04)	-	0.11 (0.10)	< 0.01 (0.01)	0.05 (0.02)
Other uncertainties:						
ATLAS $H \rightarrow \gamma \gamma$ background	0.04 (0.03)	-	-	-	0.01 (0.01)	-
modeling						
Integrated luminosity	0.01 (<0.01)	<0.01 (<0.01)	0.01 (<0.01)	<0.01 (<0.01)	0.01 ((<0.01)
Additional experimental systematic	0.03 (<0.01)	< 0.01 (< 0.01)	0.02 (<0.01)	0.01 (<0.01)	0.01 (<0.01)	0.01 (<0.01)
uncertainties						
Theory uncertainties	<0.01 (<0.01)	<0.01 (<0.01)	0.02 (<0.01)	<0.01 (<0.01)	0.01 ((<0.01)
Systematic uncertainty (sum in	0.27 (0.27)	0.04 (0.04)	0.15 (0.17)	0.16 (0.13)	0.11	(0.10)
quadrature)						
Systematic uncertainty (nominal)	0.27 (0.27)	0.04 (0.05)	0.15 (0.17)	0.17 (0.14)	0.11	(0.10)
Statistical uncertainty	0.43 (0.45)	0.52 (0.66)	0.31 (0.32)	0.42 (0.57)	0.21	(0.22)
Total uncertainty	0.51 (0.52)	0.52 (0.66)	0.34 (0.36)	0.45 (0.59)	0.24	(0.24)
Analysis weights	19% (22%)	18% (14%)	40% (46%)	23% (17%)		-