1/21

Experimental overview of $\eta \to \pi^+ \pi^- \pi^0$ Dalitz plot

Li Caldeira Balkeståhl on behalf of KLOE-2 Collaboration on behalf of WASA-at-COSY

Department of Physics and Astronomy Uppsala University

> 2014-09-29 MesonNet Meeting

In the η -rest frame:

$$egin{aligned} X &= \sqrt{3}rac{T_{\pi^+} - T_{\pi^-}}{Q_\eta} = rac{\sqrt{3}}{2m_\eta Q_\eta}(u-t) \ Y &= rac{3T_{\pi^0}}{Q_\eta} - 1 = rac{\sqrt{3}}{2m_\eta Q_\eta} \left[(m_\eta - m_{\pi^0})^2 - s
ight] - 1 \end{aligned}$$

$$Q_\eta = T_{\pi^+} + T_{\pi^-} + T_{\pi^0} = m_\eta - 2m_{\pi^+} - m_{\pi^0}$$

 $T_{\pi^+}, T_{\pi^-}, T_{\pi^0}$ kinetic energies of the π^+, π^-, π^0

s, u, t are the Mandelstam variables.

Fit the data to

$$N = \int |A(X,Y)|^2 dPh(X,Y)$$

 $|A(X,Y)|^{2} \simeq N(1 + aY + bY^{2} + cX + dX^{2} + eXY + fY^{3} + gX^{2}Y + hXY^{2} + lX^{3} + \dots)$

c, e, h and l must be zero because of C-invariance

Better way of comparing data and theory?

• Acceptance corrected data binned in X and Y

Experimental and theoretical status

Experiment	-a	b	d	f	g
Gormley (70)	1.17(2)	0.21(3)	0.06(4)	-	-
Layter et al (73)	1.080(14)	0.034(27)	0.05(3)	-	-
CBarrel (98)	1.22(7)	0.22(11)	0.06(fixed)	-	-
KLOE (08)	$1.090(5)(^{+19}_{-8})$	0.124(6)(10)	$0.057(6)(^{+7}_{-16})$	0.14(1)(2)	-
Calculations	-a	b	d	f	g
χΡΤ LO[1]	1.039	0.27	0	0	- 000
χ PT NLO[1]	1.371	0.452	0.053	0.027	-5216
χ PT NNLO[1]	1.271(75)	0.394(102)	0.055(57)	0.025 (160)	2
dispersive[2]	1.16	0.26	0.10	- 5/	5 T
simplified disp[3]	1.21	0.33	0.04	- / 6.	- Com
NREFT[4]	1.213(14)	0.308(23)	0.050(3)	0.083(19)	-0.039(2)
BSE[5]	1.054(25)	0.185(15)	0.079(26)	0.064(12)	三(11)5

KLOE (08) 1.337 ± 0.001 Mevts in Dalitz plot

 M. Gormley et al., Phys. Rev. D2, 501 (1970)
 [1] J. Bijnens and K. Ghorbani, JHEP, 0711, 030, (2007)

 J. Layter et al., Phys. Rev. D7, 2565 (1973)
 [2] J. Kambor, C. Wissendanger and D. Wyler, Nucl. Phys. B465, 215

 A. Abele et al. (Crystal Barrel Collaboration), Phys. Lett.
 [3] J. Bijnens and J. Gasser, Phys. Scripta, T99, 34 (2002)

 F. Ambrosino et al. (The KLOE collaboration), JHEP, Vol 5, 060, (2008)
 [3] J. Bijnens and N. Kibler, Eur. Phys. J., A26, 383 (2005)

Motivation for new measurements

With WASA-at-COSY

- Independent measurement
- Different detector, different η production mechanism
- Different systematic errors

Motivation for new measurements

More high statistics results needed

With KLOE

- More data ($\sim 1.6~{
 m fb}^{-1}$), independent data set
- Monte Carlo description has been improved
- Reduce systematic errors
 - event classification efficiency from prescaled events without event classification (biggest source of systematic error before)

Motivation

KLOE Reconstruction

WASA Reconstruction

$Da\phi ne and KLOE$

KLOE: DC and EMC in $\sim 0.52T$ Drift Chamber (4 m diameter, 3.75m long) - $\sigma_{xy} = 150 \ \mu m$; $\sigma_z = 2 \ mm$

$$-\frac{\delta p_t}{p_t} < 0.4\% \ (\theta > 45^\circ)$$

Electromagnetic Calorimeter

- lead/scintillating fibers
- 98% solid angle coverage

$$\begin{array}{l} - \ \frac{\sigma_E}{E} = \frac{5.7\%}{\sqrt{E(\text{GeV})}} \\ - \ \sigma_t = \frac{57 \text{ ps}}{\sqrt{E(\text{GeV})}} \oplus 100 \text{ ps} \end{array}$$

$$e^+e^- \rightarrow \phi \rightarrow \eta \gamma_{\phi}$$

 $\downarrow_{\pi}\pi^+\pi^-\pi^0$
final state $\pi^+\pi^-\gamma_+\gamma\gamma$

- $\bullet \geq$ 3 photons in EMC
- most energetic photon with ${\rm E}_{\gamma}>250~{\rm MeV}$ from $\phi\to\eta\gamma_{\phi}$
- $\mathsf{E}_{\gamma_{\phi}}$ from 2-body ϕ decay kinematics
- Calculate $P_{\eta} = P_{\phi} P_{\gamma_{\phi}}$
- Calculate $P_{\pi^0}=P_\eta-P_{\pi^+}-P_{\pi^+}$
- Background rejection cuts

Background rejection

Cuts - Reject Bhabha scattering events:

- angle between tracks and photons
- particle identification with time-of-flight tracks with calorimeter info: calculate Δt between track and cluster for π and e hypothesis

Cuts

- |Missing mass($\phi \gamma_{\phi} \pi^+ \pi^-$) m_{π^0} | < 15 MeV plot MM²
- Opening angle between π^0 -decay γ 's in the π^0 rest frame (> 165°)

Fit of Monte Carlo to data to get scaling factors for background

After event reconstruction and cuts for backround suppression:

- Signal efficiency $\epsilon_{sig} = 37.6\%$
- Background contamination 1%

Dalitz plot variables - resolution

Evaluated with Monte Carlo: Look at $X_{rec} - X_{gen}$ and $Y_{rec} - Y_{gen}$, fit with 2 gaussians.

Taking the width of the "core" Gaussian as an estimate of the resolution:

 $\delta X = 0.021 \qquad \delta Y = 0.032$

Dalitz plots made with 16 bins, $\Delta X = 0.125$ $\Delta Y = 0.125$

Background subtraction

Using Monte Carlo and scaling factors

- subtract $\omega \pi^0$ background
- subtract rest of background

COSY and WASA-at-COSY

COSY

- proton and deuteron accelerator
- in Jülich, Germany

WASA

- Central Detector measure decay products
- Forward Detector measure recoil particles
- deuterium or hydrogen pellet target
- $\textit{pd}
 ightarrow {}^3\textit{He}\eta$ at 1.0 GeV

$$d \rightarrow {}^{3}He\eta$$

final state ${}^{3}He\pi^{+}\pi^{-}\gamma\gamma$

- Identify ³*He* from energy deposit in different forward detector layers
- Background rejection cuts
- Kinematical fit
 - improve resolution
 - reject background

• Calculate
$$P_{\pi^0} = P_{\gamma,\textit{kfit}} + P_{\gamma,\textit{kfit}}$$

• Calculate P_{η}

Background rejection cuts

• Cut around the interaction point

P. Adlarson, PhD thesis Uppsala University 2012

WASA Reconstruction

Kinematic fit

Fit final state T, θ , ϕ to $pd \rightarrow {}^{3}He\pi^{+}\pi^{-}\gamma\gamma$

• uncertainties from MC as $F(T, \theta)$ (F(E, crystal plane) for γs)

P. Adlarson, PhD thesis Uppsala University 2012

16/21

Dalitz plot variables - resolution

Evaluated with Monte Carlo: Look at $X_{rec} - X_{gen}$ and $Y_{rec} - Y_{gen}$ FWHM

Taking the FWHM as resolution, $\delta X \sim \delta Y \sim 0.10$

Dalitz plot made with $\Delta X = 0.20$ $\Delta Y = 0.20$ Limiting factor is statistics

P. Adlarson, PhD thesis Uppsala University 2012

Background subtraction

For each Dalitz Plot bin, look at $\mu = MM(^{3}He)$

- simulated $pd \rightarrow {}^{3}He\eta$ (denoted $s(\mu)$) and phase space simulated $pd \rightarrow {}^{3}He\pi^{+}\pi^{-}\pi^{0}$ (denoted $b(\mu)$)
- fit of $N_s s(\mu) + N_b (1 + \alpha \mu) b(\mu)$ to data to get N_s, N_b and α
- subtract simulated $\eta \to \pi^+\pi^-\gamma$

P. Adlarson et al. (WASA-at-COSY collaboration), arXiv:1406.2505 (2014)

$$N_{theory} = \int N(1 + aY + bY^2 + cX + dX^2 + eXY + fY^3 + gX^2Y)dPh(X, Y)$$

WASA

KLOE

$$\chi^{2} = \sum_{i=1}^{Nbins} \left(\frac{N_{i} - \sum_{j=1}^{Nbins} \epsilon_{j} S_{ij} N_{theory,j}}{\sigma_{i}} \right)^{2}$$

$$\chi^{2} = \sum_{i=1}^{Nbins} \left(\frac{\frac{N_{i}}{\epsilon_{i}} - N_{theory,i}}{\sigma_{i}} \right)^{2}$$

with

- N_i background subtracted data
- ϵ_j efficiency
- S_{ij} smearing matrix
- $\int YdPh(X, Y)$, $\int Y^2 dPh(X, Y)$, etc. by MC integration

with

- N_i background subtracted data
- ϵ_i efficiency
- $\int NaYdPh(X, Y) \simeq NaY_i^C \Delta Y \Delta X$, $\int NcXdPh(X, Y) \simeq NcX_i^C \Delta Y \Delta X$, etc

$$N_{theory} = \int N(1 + aY + bY^2 + cX + dX^2 + eXY + fY^3 + gX^2Y)dPh(X, Y)$$

 \boldsymbol{c} and \boldsymbol{e} consistent with zero

Experiment	— <i>a</i>	Ь	d	f
KLOE 08	$1.090(5)(^{+8}_{-19})$	0.124(6)(10)	$0.057(6)(^{+7}_{-16})$	0.14(1)(2)
WASA prel.	1.144(18)	0.219(19)(37)	0.086(18)(18)	0.115(37)
KLOE prel.	1.104(3)	0.144(3)	0.073(3)	0.155(6)

New KLOE analysis only statistical errors!

New KLOE: Sensitive to g parameter, but still investigating

F. Ambrosino et al. (The KLOE collaboration), JHEP, Vol 5, page 006, (2008)

P. Adlarson et al. (WASA-at-COSY collaboration), arXiv:1406.2505 (2014)

• Two independent high statistics measurements of $\eta \to \pi^+\pi^-\pi^0$ Dalitz plot

KLOE

• Full systematic checks to be done

WASA

- Systematic checks (magnetic field, beam accelerator mode, background fitting)
- Acceptance corrected data provided
- Final paper coming soon (arXiv:1406.2505)
- Larger statistics available