Status of Borexino

What Borexino is doing?

Gianpaolo Bellini- INFN-Milano

Borexino phase I - May 2007- May 2010 Purification campaign- May 2010-October 2011 Borexino phase2- October 2011-Fall 2015

Phase 2 main conditions:

1- Radiopurity (after the new purification campaign)

Nuclide	Rate(cpd/100 tons)	Remarks
‱K.r	< 6.4 cpd/100 tons	No candidates observed since oct. 2011 (phase 2)
²³² Th equiv.	< 2.2 10 ⁻¹⁸ g/g	Two candidates observed in the last 315 live days.
238U equix.	3.3±1.4 10 ⁻¹⁹ g/g	
²¹⁰ Bi	18±1.5 cpd/100 tons.	Perhaps still going down slowly- see interpretation in the text
210 P Q	400 cpd/100 tons	Due to its lifetime its rate will be at the same order of magnitude as ²¹⁰ Bi ≥ 1 year from oct.2012.

2- Detector left undisturbed and untouched as much as possible

The physics case of Borexino phase 2

1- Stellar Physics: CNO- is theorized to be the primary channel for Hydrogen burning in stars more massive than the Sun, and the primary channel for hydrogen burning in the Universe: never measured!!

2- Solar physics: direct measurements of all fluxes(except hep) first direct measurement of the **pp** flux (without luminosity constraint); **CNO-** low vs high metallicity- ~ 30% of difference between the two fluxes; reduction of the uncertainties of the ⁷Be and pep measurements

3-Neutrino physics: transition region- NSI, ultra-light sterile neutrino:

- # pep flux with higher precision; # 8 B in the range 3.-5. MeV # $v_e - e$ elastic scattering
 - @ artificial source:
 # sterile neutrino
 # NSI via $v_e e$ e.s
 # v_e magnetic moment
 # Weinberg angle

NS effective four fermion interactions

$$\ell_{NSI} = -2\sqrt{2}G_F \varepsilon_{\alpha,\beta}^{e,u,d} \left(\overline{\nu}_{\alpha} \gamma^{\mu} P_L \nu_{\beta} \right) \left(\overline{f} \gamma_{\mu} P_C f' \right)$$

f and f' = electron or the light quarks; C can be L or R, i.e. the chirality of the operator P, ε is a dimensionless parameter which, coupled with the weak coupling constant, parameterizes the strength of the interaction.

Oscillation matrix element with NSI

$\begin{pmatrix} \sqrt{2}G_FN_e(1+arepsilon_{ee}) & 0 & 0 \\ & 0 & \sqrt{2}G_FN_earepsilon_{\mu\mu} & 0 \\ & 0 & 0 & \sqrt{2}G_rN_earepsilon_{ee} \end{pmatrix}$

Transition region

$$\varepsilon_{ee}, \varepsilon_{\mu\mu}, \varepsilon_{\tau\tau} = 0.25, 0., -0.5,$$
(punctuated line)

-0.25. 0., 0.5 (dashed line)

pep, 8B (3.-5. MeV)

NSI (cont.)

v-e elastic scattering (big advantage with mono-energetic fluxes)

$$\begin{split} \frac{d\bar{\sigma}(T)}{dT} &= \frac{2G_F^2 m_e}{\pi} \left[\overline{g}_{eL}^2 + \overline{g}_{eR}^2 \left(1 - \frac{T}{E_{v_e}} \right) - \overline{g}_{eL} \overline{g}_{eR} \frac{m_e T}{E_{v_e}} \right] \\ \overline{g}_{\alpha L} &= g_{\alpha L} + \varepsilon_{\alpha L} \qquad \overline{g}_{\alpha R} = g_{\alpha R} + \varepsilon_{\alpha R} \end{split}$$

where α concerns the neutrino flavor, $g_{\alpha R} = \sin^2 \theta_W$ and $g_{\alpha L} = \sin^2 \theta_W \pm \frac{1}{2}$ (in the last case + is valid for α =e and - is applied when α = μ and τ).

$$\varepsilon_{eL}$$
, ε_{eR} = 0.01,0.2 (dashed line)
-0.01,-0.05 (punctuated line)

⁷Be, ⁵¹Cr source

Ultra-light sterile neutrino

Systematic lack of the up-turn, even if the evidence is always weak (<2 σ -SNO, SK, Kamland, Borexino)-also Homestake shows a suppression stronger than expected.

These results can be explained if a very light sterile neutrino exists and mixes very weakly with active neutrinos ($\sin \alpha <<1$), which have the smallest (solar) mass splitting. Due to the very small mass (0.003-0.004 eV), the contribution of these sterile neutrinos to the sum of neutrino masses is negligible. Bounds are already given by ⁷Be and partly also by pep (Borexino).

⁸Be 3.-5. MeV

pep with strongly reduced uncertainty

What Borexino can measure in the phase 2?

pp

Never directly **measured-** the present uncertainty is constrained by the radiochemical esp., Borexino ⁷Be measurements, and by the solar Luminosity. A pp flux measured directly can be compared with the solar luminosity

Analysis phase I

range:~110-360 keV

Main problem:

¹⁴C and its pile up

Advantages in phase 2 with Kr~0; ²¹⁰Bi reduced to ½---- CO₂ test

Effort to reduce the total flux measurement uncertainty to 3%.

Is it possible?

Statistical error ±1.9 cpd/100 t

Systematic

Source	[%]
Trigger efficiency and stability	< 0.1
Live time	0.04
Scintillator density	0.05
Sacrifice of cuts	0.1
Position reconstruction	$^{+1.3}_{-0.5}$
Energy scale	2.7
Fit methods	2.0
Total Systematic Error	$+3.6 \\ -3.4$

Tools:

- Relevant correlations among ⁷Be, ⁸⁵Kr and ²¹⁰Bi rates and perhaps also ²¹⁰Po (with a minor role)-
- · Statistics will be more than doubled;
- New multivariate fitter (energy spectra, radial distribution of the events as the sum of signal and background contributions.)
- Possible gain in the energy scale uncertainty from the a further calibration campaign.

A measurement of a flux as ⁷Be neutrinos at 3% is important by itself also for the SSM

 $\nu\text{--e}$ cross section vs electron recoiled energy-

Phase 2

85Kr=0
210Bi=18 cpd/100 t
Flux uncertainty : 3.4 %

First direct measurement of the CNO flux Reduction of the pep flux uncertainty

Main problems: ²¹⁰Bi and ¹¹C

The constant presence of ²¹⁰Bi (now reduced to ~ 18 cpd/100 tons) suggests that it is produced by ²¹⁰Pb \longrightarrow ²¹⁰Bi+²¹⁰Po. Therefore we can assume that part of ²¹⁰Po is continuously produced together with ²¹⁰Bi. Now the ²¹⁰Po is ~180 cpd/100t and in < 1 year from now it will be at the same order of magnitude as ²¹⁰Bi (τ (²¹⁰Po) ~ 200 d). The sensitivity of a fit on ²¹⁰Po vs time could be enough to show an exponential (exp[t/τ_{210} $_{Po}$]) plus a constant, providing in this way the ²¹⁰Bi rate.

Phase 1- ~488 live days-Integrated flux from 3. MeV electron recoil energy (~3.2 MeV for v)

Main Background: ²⁰⁸ TI internal and external: total contribution 0.084±0.02 cpd/100 t, to be compared with ⁸B rate:~0.22 cpd/100t: external bck. rejected with FV (r<3m); internal MC evaluated and subtracted *No energy spectrum fit* (continuous fit-oscillation impact) But the total uncertainty *fully dominated* by the statistical error

Phase 2- ~ 1200 live days- internal ²⁰⁸Tl halved-

On the basis of statistical considerations the rate uncertainty will be ~10% on the integrated flux; reduced to 9% if phase1+2 is considered. *In the range 3.-5. the total uncertainty will be ~13% for the phase 2* and 14.8% for the phase 1+2 (the ²⁰⁸Tl background is present mostly in the range 3.-5.MeV)

geoneutrinos

Analysis almost *totally decoupled* from the background due to the well tagged \overline{v} interactions.

Recently released data (PLB-D-I3-00307RI): 1353 live days- FV: 25 cm from the IV walls-14.3±4.4 geo-neutrinos- (4.5 σ C.L.) Reactor $\overline{\boldsymbol{v}}$; mean distance ~1169 km.; $31.2^{+7.0}_{-6.1}$ events (expected 33.3±2.4); no oscillation excluded at 99.9±0.2% C.L.

- Considering an expected contribution from the crust of 23.4±2.8 TNU, the signal from the mantle: 15.4±12.3 TNU and combined with Kamland: 14.1±8.1 TNU
- Ratio Th/U in agreement with the chondritic value (~ 1 σ)

End of phase 2:~2500 live days

Seasonal variations

Main problem: *detector stability*

Phase 1- result in agreement with the expectation, but with low significance

Phase 2- signal/noise ≥ 2 ~36-38 I.months data taking Hopefully detector untouched and undisturbed

MC. with 28 l.months statistics with Phase 2 conditions

Some results already from phase 2 (1 year)

60 days bins

green=expected modulation

Sterile neutrino, NSI, neutrino magnetic moment, Weinberg angle

Sterile neutrino

- Reactor antineutrino flux deficit (~6%)
- 51Cr (37Ar) source for Gallex and Sage deficit
- Latest MiniBoone results seem agree with the LNSD excess of $v_e(\overline{v}_e)$

Hypothesis: existence of a sterile neutrino(s), with a large mass-squared splitting: $\Delta m_{14}^2 \cong \Delta m_{24}^2 \cong \Delta m_{34}^2 \cong 1 eV^2$

- @ ⁵¹Cr source, 200-400 PBq, ~10Mci activation, installed in the tunnel below Bx detector (8.25m from the IV center) probably in the winter 2015
- @ 2 lines around 750 eV
- $@ \le 3 \text{ months of running}$

Appendix to the phase 2

- # 2-4 PBq; ~50-100 kCi ¹⁴⁴Ce-¹⁴⁴Pr anti-neutrino source in the water tank, but activating also the buffer with PPO
- # continuous spectrum up to ~3 MeV; mean energy ~2.4 MeV.
- # ~ 1.5 year

FV: expected background: ~11.8 cpd for ²¹⁰Po,others: 54 cpd;

in any case background rejected by a source on, source off analysis

Obs. of oscillatory pattern

- Expected ∆m² ~1 eV²
- v energy ~1 MeV
- Oscillation lenght= few m
- All know errors included

 MC 2000 data samples discovery potential

NSI: v-e Elast. Scatt.

source on- source off flux uncert. 1.5% background negligible \$\%\$

v_e magnetic moment:

expected limit ~2.9 $10^{\text{-}11}\,\mu_{\text{B}}$ (Gemma 3.2 $10^{\text{-}11}\,\mu_{\text{B}}$)

Weinberg angle:

~2.6% of uncertainty on $\sin^2\theta_W$ (presently best limit at low energy)

Supernova observatory (SNEWS – SuperNova Early Warning System.

galactic Supernova at 10 kpc

Detection	Normal	Inverted
channel	Hierarchy	Hierarchy
$\bar{\nu}_e$ on protons (E _{\nu} > 1.8 MeV)	68	68
ν -p Elast. Scatt. (E $_{\nu} > 0.25 \text{ MeV}$)	40	40
$^{12}C (\nu,\nu)^{12}C^* (E_{\gamma} > 15.1 \text{ MeV})$	13	13
$^{12}\text{C} (\bar{\nu}_e, e^+) ^{12}\text{B} (E_{\bar{\nu}_e} > 14.3 \text{ MeV})$	3	5
$^{12}C(\nu_e, e^-)^{12}N \ (E_{\nu_e} > 17.3 \ MeV)$	6	4

Burst in ~10 sec

Spectrum of recoiled protons

Very low threshold

Tentative schedule of the phase 2

Conclusion

Physics goals of phase 2

- 1- CNO cycle: Hydrogen burning in massive stars;
- 2- P_{ee} transition region shape: MSW-LMA model, NSI, ultra-light sterile neutrino;
- 3- ⁷Be neutrinos and external source v-e elastic scattering: NSI
- 4- Sterile neutrino (neutrino source)
- 5- Seasonal variation: (7Be neutrinos)
- 6- Best determination of v_e magnetic moment and lower Weinberg angle exp. uncertainty at low energy (source)
- 7- Upgraded Earth infos from geoneutrinos
- 9- Supernova observatory