

The Higgsploding Universe

Michael Spannowsky

IPPP, Durham University

In collaboration with Valya Khoze

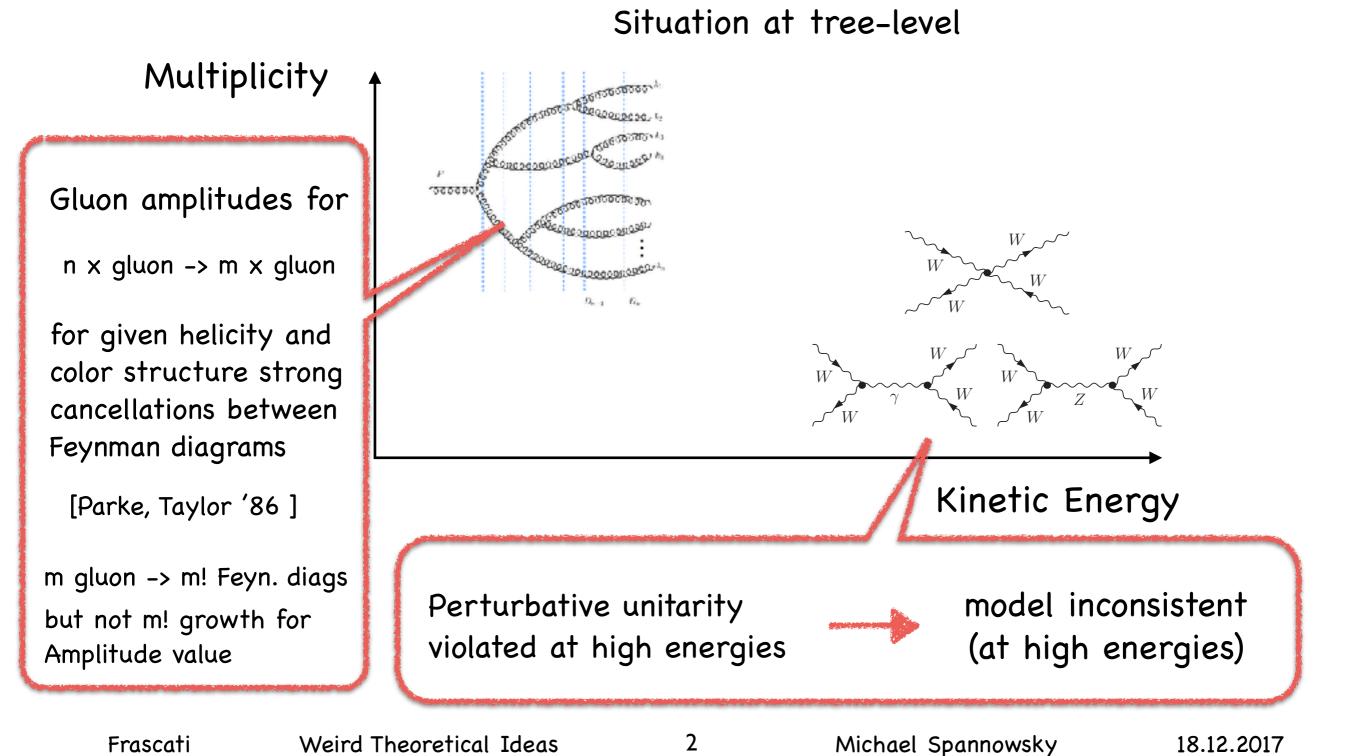
Frascati

Weird Theoretical Ideas

Michael Spannowsky

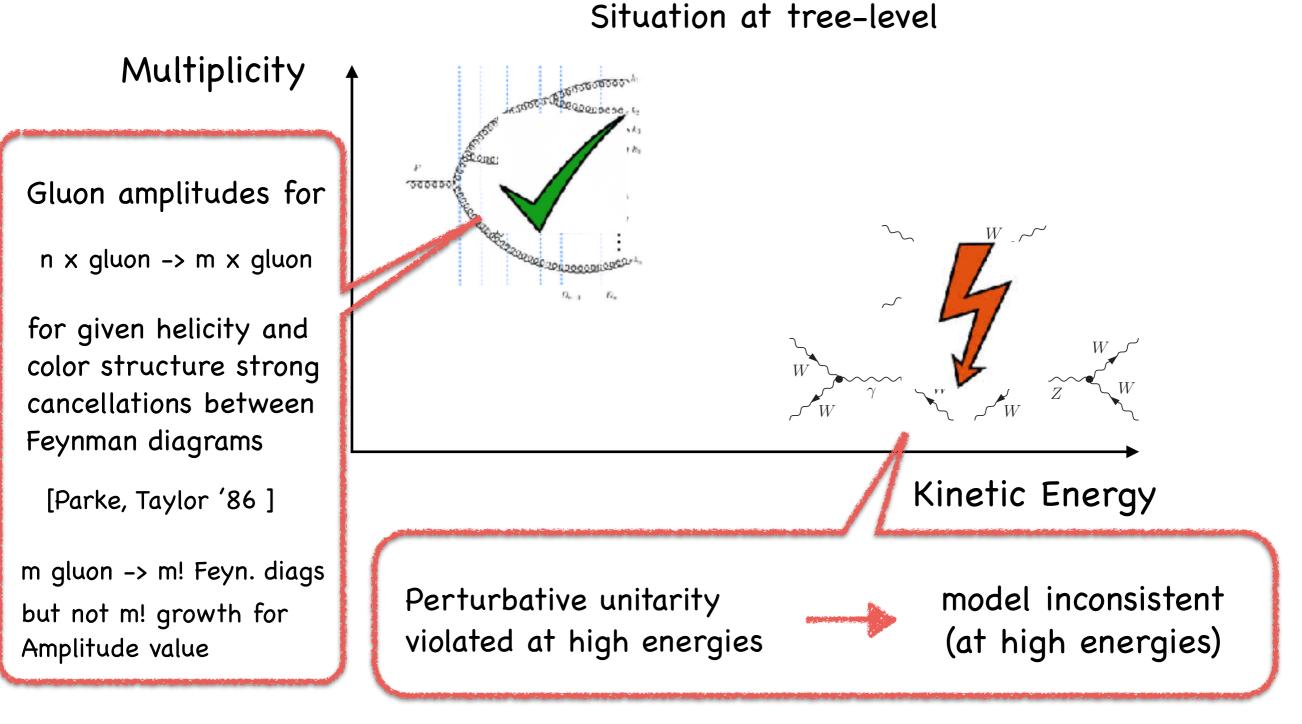
A Standard Model Tale

Before the discovery of the Higgs boson - (Yang-Mills theories)



A Standard Model Tale

Before the discovery of the Higgs boson - (Yang-Mills theories)

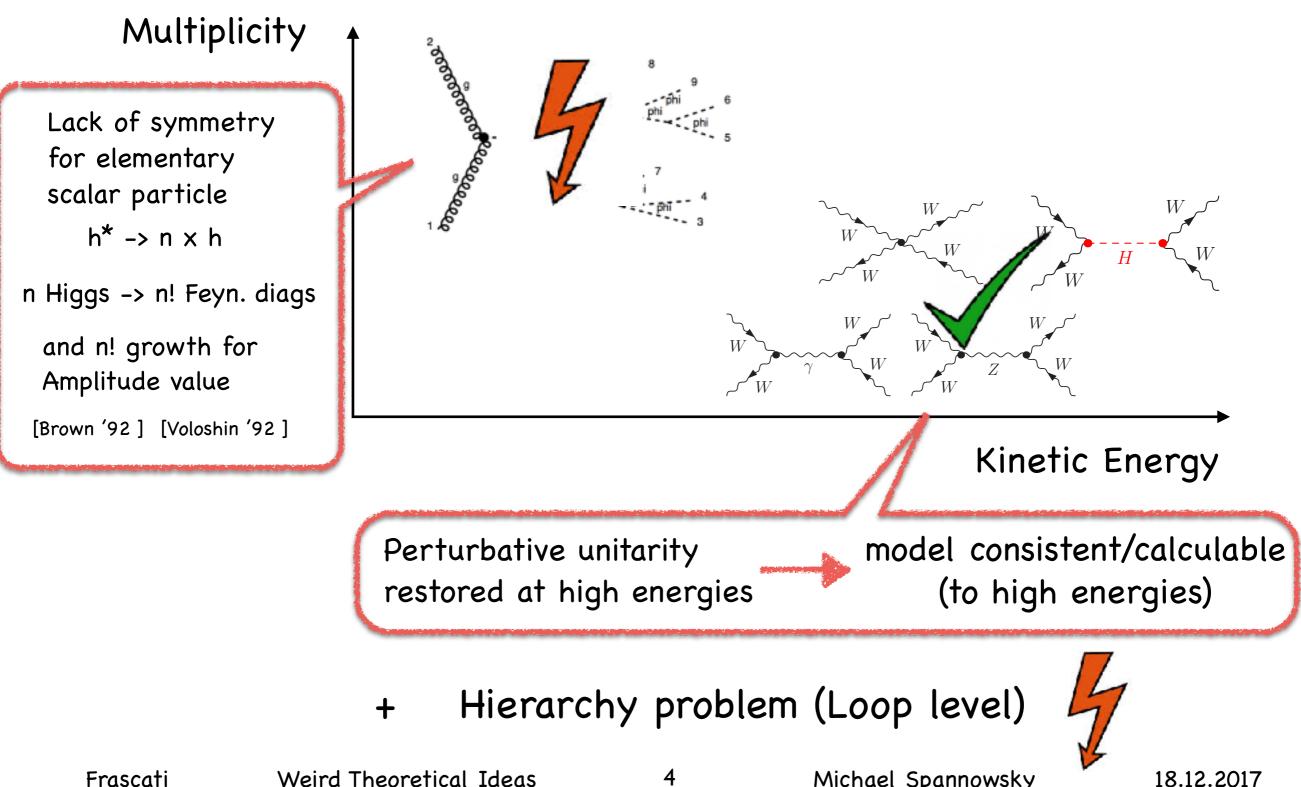


Frascati

3

After the discovery of the Higgs boson - complete Standard Model

Situation at tree-level



Michael Spannowsky

18.12.2017

Calculation of $1^* \rightarrow n$ amplitudes

Assume Lagrangian

$$\mathcal{L}_{\rho}(\phi) = \frac{1}{2} \left(\partial\phi\right)^2 - \frac{1}{2}M^2\phi^2 - \frac{1}{4}\lambda\phi^4 + \rho\phi$$

The amplitude is calculated using the LSZ reduction technique [Brown '92]

$$\langle n|\phi(x)|0\rangle = \lim_{\rho \to 0} \left[\prod_{j=1}^{n} \lim_{p_j^2 \to M^2} \int d^4 x_j e^{ip_j \cdot x_j} (M^2 - p_j^2) \frac{\delta}{\delta\rho(x_j)} \right] \langle 0_{\text{out}}|\phi(x)|0_{\text{in}}\rangle_{\rho}$$

where the tree-level approximation is obtained via $\langle 0_{out} | \phi(x) | 0_{in} \rangle_{\rho} \longrightarrow \phi_{cl}(x)$ and $\phi_{cl}(x)$ is a solution to the classical field equation

IDEA: Fill whole phase-space with particles, i.e. produce all particles at mass threshold

with
$$\vec{p}_j = 0$$
 $p_j^{\mu} = (\omega, \vec{0})$ and $\rho(x) = \rho(t) = \rho_0(\omega) e^{i\omega t}$
Here QFT -> time-dep QM:
 $z(t) := \frac{\rho_0(\omega) e^{i\omega t}}{M^2 - \omega^2 - i\epsilon} := z_0 e^{i\omega t}, \quad z_0 = \text{finite const}$

5

Frascati

Weird Theoretical Ideas

Hence, the generating function of tree amplitudes on multi-particle thresholds is a classical solution to the Euler-Lagrange equation. It solves an ordinary differential equation with no source term

$$\begin{aligned} & d_t^2\phi + M^2\phi + \lambda\phi^3 = 0 \\ & \text{with} \\ & \phi_{\text{cl}}(t) = z(t) + \sum_{n=2}^{\infty} d_n \, z(t)^n \,, \\ & z := z_0 \, e^{iMt} \end{aligned}$$

The coefficients d_n determine the actual amplitudes by differentiation w.r.t. z

$$\mathcal{A}_{h^* \to n \times h} = \left(\frac{\partial}{\partial z} \right)^n h_{cl} \Big|_{z=0} = n! d_n = n! (2v)^{1-n}$$
 Factorial growth

$$\phi_{\rm cl}(t) = \frac{z(t)}{1 - \frac{\lambda}{8M^2} z(t)^2} \qquad \mathcal{A}_{1 \to n} = n! \left(\frac{\lambda}{8M^2}\right)^{\frac{n-1}{2}}$$

Same findings by [Voloshin '92] [Argyes, Kleiss, Papadopoulos '92] [Libanov, Rubakov, Son, Troitski '94]

Michael Spannowsky

Frascati

Weird Theoretical Ideas

6

Several generalisations of this approach:

• Higgs like, ie. phi⁴ with vev: [Brown '92] $1 \quad (2)^{n} \quad (2)^{2} \quad (2$

• Gauge-Higgs theory: [Khoze '14]

Higgs process $\mathcal{A}(h \to n \times h + m \times Z_L) = (2v)^{1-n-m} n! m! d(n,m)$

Z process
$$\mathcal{A}(Z_L \to n \times h + (m+1) \times Z_L) = \frac{1}{(2v)^{n+m}} n! (m+1)! a(n,m)$$

• Go beyond mass threshold (needs space-dep sol.):

Frascati

[Argyes, Kleiss, Papadopoulos '92] [Libanov, Rubakov, Son, Troitski '94]

Weird Theoretical Ideas7Michael Spannowsky18.12.2017

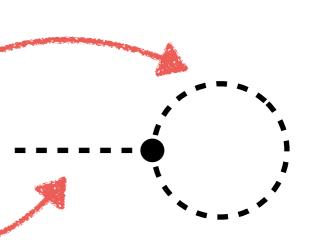
How about loops?

<u>Usual criticism</u>: need to include loops to render cross section finite. Keep in mind, we calculate exclusive rate of massive internal and outgoing particles -> **no mass-divergencies and observable IR-safe**

Loop corrections calculated by expanding around classical field $\phi(x) = \phi_0(x) + \phi_q(x)$ Euclidean Lagrangian becomes $\mathcal{L} = \frac{1}{2}(\partial_\mu\phi_q)^2 + \frac{1}{2}(m^2 + 3\lambda\phi_0^2)\phi_q^2 + \lambda\phi_0\phi_q^3 + \frac{\lambda}{4}\phi_q^4$. After promoting classical solution ϕ_0 to quantum expectation value $\langle \phi \rangle = \phi_0 + \langle \phi_q \rangle$ Individual amplitudes calculated via gen. functional $\langle n|\phi|0 \rangle = \left(\frac{\partial}{\partial z_0}\right)^n (\phi_0 + \langle \phi_q \rangle)|_{z_0=0}$

Use Feynman rules of Eucl. Lagrangian and calculate

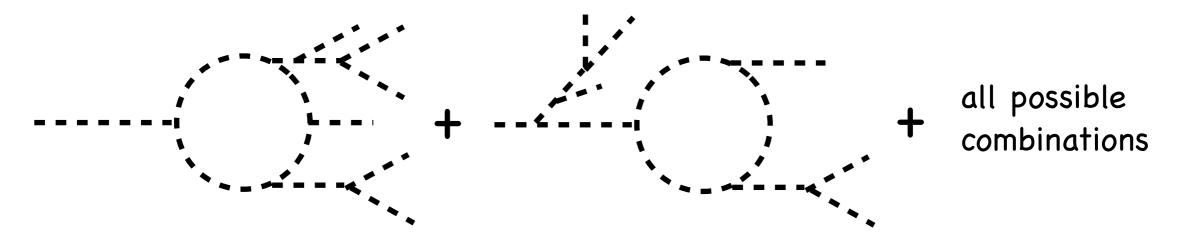
$$\langle \phi_q(y) \rangle_{1-\text{loop}} = (-3\lambda) \int d^4x \, G(y,x) \, \phi_0(x) \, G(x,x)$$



You will find for the combined tree + 1-loop [Smith `92] generating functional [Voloshin `92]

$$\phi_{0+1}(t) = \frac{z(t)}{1 - (\bar{\lambda}/8\bar{m}^2)z(t)^2} \left(1 - \frac{3\lambda}{4}F\frac{(\lambda/8m^2)^2 z(t)^4}{(1 - (\lambda/8m^2)z(t)^2)^2}\right)$$

Now follow Brown's program to build



One obtains for scalar loops

$$A_n = n! \, (2v)^{1-n} \left[1 + n(n-1) \, \frac{\sqrt{3} \, \lambda}{8\pi} + O(\lambda^2) \right] \quad \text{for} \quad \lambda n \ll 1$$

and including fermion loops it is argued cancellations can occur [Voloshin '17] $A_n \to A_n \times \left[1 + (-1)^{2r} C(r) n^{4r-4} \lambda\right]$ with $r = m_t / \sqrt{2\lambda v^2}$

(exponentiate for $n\lambda > 1$)? in SM subleading to scalar loops

Frascati Weird Theoretical Ideas 9 Michael Spannowsky 18.12.2017

In non-rel. limit the LO cross section for n-Higgs production scales like:

$$\sigma_n \propto \exp\left[\frac{1}{\lambda} F_{\text{h.g.}}(\lambda n, \varepsilon)\right] \quad \text{with} \quad \frac{1}{\lambda} F_{\text{h.g.}}(\lambda n, \varepsilon) = \frac{\lambda n}{\lambda} \left(f_0(\lambda n) + f(\varepsilon)\right)$$

for a scalar theory with SSB: $f_0(\lambda n) = \log \frac{\lambda n}{4} - 1$ at tree level
[Libanov, Rubakov, Son, Troitsky '94] $f(\varepsilon) \rightarrow \frac{3}{2} \left(\log \frac{\varepsilon}{3\pi} + 1\right) - \frac{25}{12}\varepsilon \quad \text{for } \varepsilon \ll 1$

However, leading loop contributions can be resummed (only valid when $n\lambda < 1$): <u>Resummed 1-loop contribution</u>:

$$\begin{array}{ll} \mathcal{A}_{1 \rightarrow n} = \mathcal{A}_{1 \rightarrow n}^{\mathrm{tree}} \times \exp \left[B \,\lambda n^2 + \mathcal{O}(\lambda n) \right] & \text{with} \quad B = \frac{\sqrt{3}}{4\pi} \\ f_0(\lambda n) = \underbrace{\log \frac{\lambda n}{4} - 1 + \lambda n \frac{\sqrt{3}}{4\pi}}_{\mathrm{tree}} & \text{significant loop enhancement} \\ & \text{Higher loops expected to scale } \left(\frac{n\lambda}{4\pi} \right)^{\#\mathrm{Loop}} \\ f(\varepsilon) \rightarrow \underbrace{\frac{3}{2} \left(\log \frac{\varepsilon}{3\pi} + 1 \right) - \frac{23}{12} \varepsilon}_{\mathrm{kinematics}} & \text{for} \quad \varepsilon \ll 1 \\ & & & & & & & & \\ \mathrm{Frascati} & & & & & & & & \\ \mathrm{Weird Theoretical Ideas} & & & & & & & \\ \mathrm{Michael Spannowsky} & & & & & & & \\ \mathrm{Smith} & & & & & & & & \\ \mathrm{Smith} & & & & & & & \\ \mathrm{Smith} & & & & & & & \\ \mathrm{Smith} & & & & & & & \\ \mathrm{Smith} & & & & & & & \\ \mathrm{Smith} & & & & & & & \\ \mathrm{Smith} & & & & & & & \\ \mathrm{Smith} & & & & & & & \\ \mathrm{Smith} & & & & & & & \\ \mathrm{Smith} & & & & & & & \\ \mathrm{Smith} & & & & \\ \mathrm$$

From amplitudes to cross sections

$$\sigma_{n,m} = \int d\Phi_{n,m} \frac{1}{n! \, m!} |\mathcal{A}_{h^* \to n \times h + m \times Z_L}|^2 \quad \mathbf{x} \quad \text{flux factor}$$

$$\int d\Phi_n = (2\pi)^4 \delta^{(4)}(P_{\text{in}} - \sum_{j=1}^n p_j) \prod_{j=1}^n \int \frac{d^3 p_j}{(2\pi)^3 \, 2p_j^0} \qquad \text{Bose statistics factors for n identical}$$

$$\text{Higgs and m identical long. Vec.}$$

Integration with $n\varepsilon_h$ fixed $\Phi_n \simeq \frac{1}{\sqrt{n}} \left(\frac{M_h^2}{2}\right)^n \exp\left[\frac{3n}{2} \left(\log\frac{\varepsilon_h}{3\pi} + 1\right) + \frac{n\varepsilon_h}{4} + \mathcal{O}(n\varepsilon_h^2)\right]$

•
$$\sigma_{n,m} \sim \exp\left[2\log(\kappa^m d(n,m)) + n\log\frac{\lambda n}{4} + m\log\frac{\lambda m}{4}\right]$$

$$+\frac{n}{2}\left(3\log\frac{\varepsilon_{h}}{3\pi}+1\right)+\frac{m}{2}\left(3\log\frac{\varepsilon_{V}}{3\pi}+1\right)-\frac{25}{12}n\varepsilon_{h}-3.15m\varepsilon_{V}+\mathcal{O}(n\varepsilon_{h}^{2}+m\varepsilon_{V}^{2})\right]$$

$$\bigwedge$$
kinematic (phase space)
suppression

For $n\lambda > 1$ loops overpower tree result, how about semi-classical approach? [Son '95]

ullet Multiparticle decay rates Γ_n can be calculated using semi-classical method

intrinsically non-perturbative method

no reference to perturbation theory

• Path-integral calculated in deepest descend method, where

 $\lambda \to 0$, $n \to \infty$, with $\lambda n = \text{fixed}$, $\varepsilon = \text{fixed}$.

• Semi-classical calculation in regime where $\lambda n = \text{fixed} \ll 1$, $\varepsilon = \text{fixed} \ll 1$, reproduces tree-level perturbative result for non-relativistic final states Remarkably this semi-classical calculation also reproduces the 1-loop resummed calculation in this limit

Semi-classical calculation for rate R(1->nh, E)

[Son '95]

 Semi-classical calculation is applicable and more relevant for nonperturbative regime of Higgsplosion, where

$$\lambda n = \text{fixed} \gg 1$$
, $\varepsilon = \text{fixed} \ll 1$.

• This calculation was carried out with result given by [Khoze '17]

$$\mathcal{R}_n(\lambda;n,arepsilon) = \exp\left[rac{\lambda n}{\lambda}\left(\lograc{\lambda n}{4} + 0.85\sqrt{\lambda n} + rac{1}{2} + rac{3}{2}\lograc{arepsilon}{3\pi} - rac{25}{12}arepsilon
ight)
ight],$$

higher orders are suppressed by powers of $\mathcal{O}(1/\sqrt{\lambda n})$ and powers of \mathcal{E}

The main idea of the semi-classical setup [Son '95]

• $R_n(E)$ is the probability rate for the local operator $\mathcal{O}(0)$ to create n particles of energy E from the vacuum

$$R_n(E) = \int \frac{1}{n!} d\Phi_n \langle 0 | \mathcal{O}^{\dagger} S^{\dagger} P_E | n \rangle \langle n | P_E S \mathcal{O} | 0 \rangle$$

 P_E is the projection operator on states with fixed energy E

$$\mathcal{O} = e^{jh(0)}$$

and the limit j->0 is taken in the calculation of the probability rates

$$R_n(E) = \lim_{j \to \infty} \int \frac{1}{n!} d\Phi_n \langle 0 | e^{jh(0)^{\dagger}} S^{\dagger} P_E | n \rangle \langle n | P_E S e^{jh(0)} | 0 \rangle$$

Note: non dynamical (non-propagating) initial state $\mathcal{O}\left|0
ight
angle$

The semi-classical deepest descent limit:

 $\lambda \to 0\,, \quad n \to \infty\,, \quad \text{with} \quad \lambda n = \text{fixed}\,, \quad \varepsilon = \text{fixed}\,.$

Evaluate the path integral in this double-scaling limit. n enters via the coherent state formalism.

Frascati

The main idea of the semi-classical setup [Son '95]

1. Solve the classical equations without source term

$$\frac{\delta S}{\delta h(x)} = 0$$

by finding a complex-valued solution h(x) with a point-like singularity at the origin and regular everywhere else in Minkowski space

2. Impose the initial and final-time boundary conditions

$$\lim_{t \to -\infty} h(x) = v + \int \frac{d^3k}{(2\pi)^{3/2}} \frac{1}{\sqrt{2\omega_{\mathbf{k}}}} a_{\mathbf{k}} e^{ik_{\mu}x^{\mu}}$$
$$\lim_{t \to +\infty} h(x) = v + \int \frac{d^3k}{(2\pi)^{3/2}} \frac{1}{\sqrt{2\omega_{\mathbf{k}}}} \left(b_{\mathbf{k}} e^{\omega_{\mathbf{k}}T - \theta} e^{-ik_{\mu}x^{\mu}} + b_{\mathbf{k}}^* e^{ik_{\mu}x^{\mu}} \right)$$

(T and theta are parameters arising from projection onto final states with definite E and n)

The main idea of the semi-classical setup [Son '95]

3. Compute the energy and the particle numbers using the $t \to +\infty$ asymptotics of h(x)

$$E\,=\,\int d^3k\;\omega_{f k}\,b_{f k}^*\,b_{f k}\,e^{\omega_{f k}T- heta}\,,\qquad n\,=\,\int d^3k\;b_{f k}^*\,b_{f k}\,e^{\omega_{f k}T- heta}\,.$$

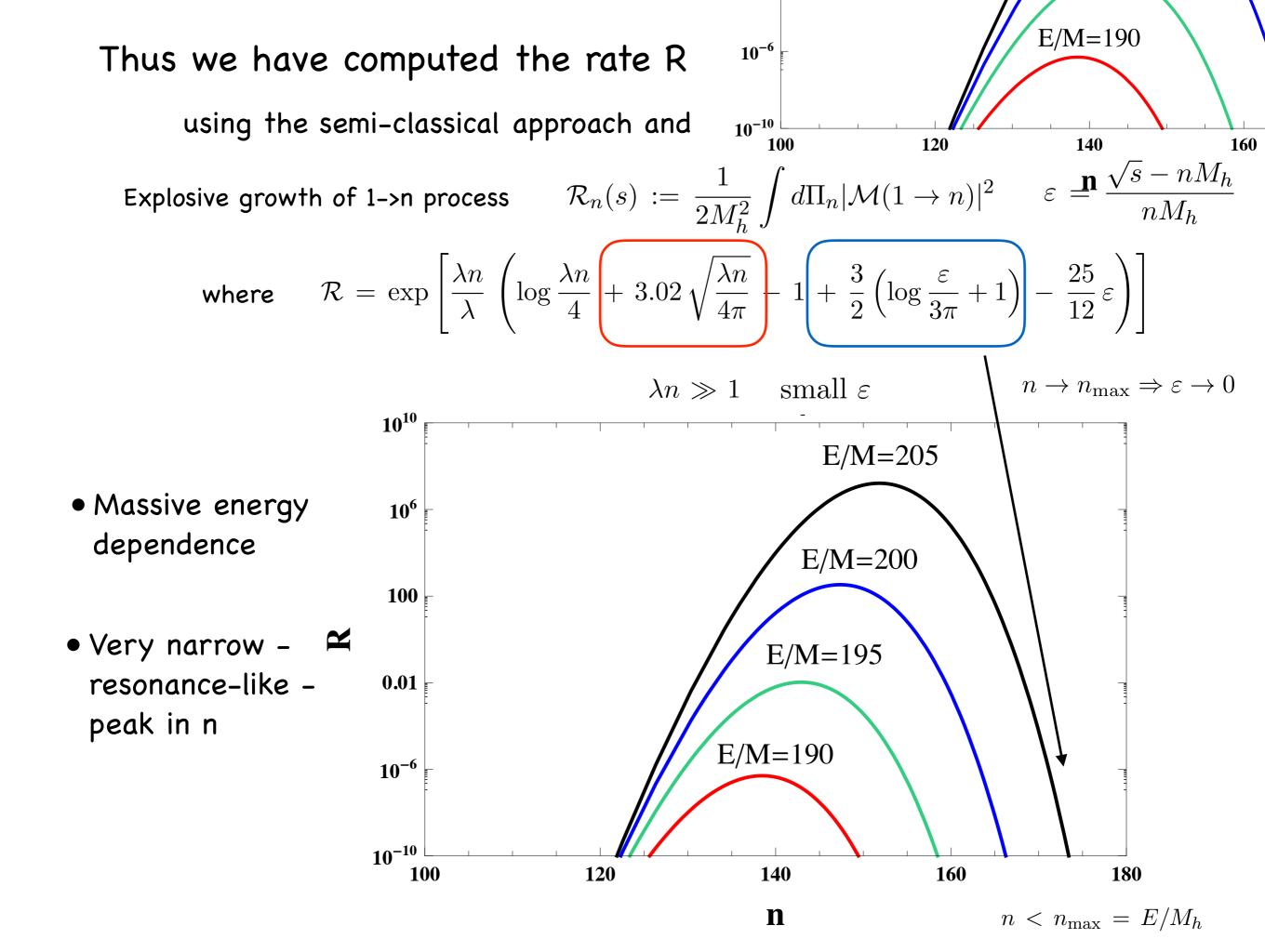
At $t \to -\infty$ the energy and the particle number are vanishing.

The energy is conserved by regular solutions and changes continuously from 0 to E at the singularity at t=0.

4. Eliminate the T and θ parameters in favour of E and n using the expressions above. Finally compute the function W(E,n)

$$W(E,n) = ET - n\theta - 2 \text{Im}S[h]$$

and thus determine the semiclassical rate $R_n(E) = \exp[W(E, n)]$



Thus we have computed the rate R in the large lambda n limit:

using the semi-classical approach and the thin-wall approximation

Explosive growth of 1->n process
$$\mathcal{R}_n(s) := \frac{1}{2M_h^2} \int d\Pi_n |\mathcal{M}(1 \to n)|^2$$

where $\mathcal{R} = \exp\left[\frac{\lambda n}{\lambda} \left(\log\frac{\lambda n}{4} + 3.02\sqrt{\frac{\lambda n}{4\pi}} - 1 + \frac{3}{2} \left(\log\frac{\varepsilon}{3\pi} + 1\right) - \frac{25}{12}\varepsilon\right)\right]$

energy beyond threshold

energy low

Weird Theoretical Ideas

Schwinger-Dyson-propagator and optical theorem

SD propagator, valid in perturbative and non-perturbative QFT

$$\Delta(p) = \int d^4x \, e^{ip \cdot x} \langle 0 | T\left(\phi(x) \, \phi(0)\right) | 0 \rangle = \frac{i}{p^2 - m_0^2 - \Sigma(p^2) + i\epsilon}$$

where $-i\Sigma(p^2)=\sum -(1{
m PI})-$ and the physical (pole) mass is $m^2=m_0^2+\Sigma(m^2)$

with the renormalisation constant $Z_{\phi} = \left(1 - \frac{d\Sigma}{dp^2}\Big|_{p^2 = m^2}\right)^{-1}$ we define the renorm. quantities

$$\Delta_R(p) = Z_{\phi}^{(-1)} \Delta(p),$$

$$\Sigma_R(p) = Z_{\phi} \left(\Sigma(p^2) - \Sigma(m^2) - \Sigma'(m^2)(p^2 - m^2) \right)$$

renormalised propagator $\Delta_R(p) = rac{i}{p^2 - m^2 - \Sigma_R(p^2) + i\epsilon}$

Frascati

Weird Theoretical Ideas

Schwinger-Dyson-propagator and optical theorem

The optical theorem now relates the $1^* \rightarrow nh$ amplitudes with the imaginary part of the self-energy (valid to all orders)

$$-\operatorname{Im} \Sigma_{R}(p^{2}) = m \Gamma(p^{2}) \quad \quad -\operatorname{Im} \left(\stackrel{p^{2}}{-} \stackrel{p^{2}}{-} \right) = m^{\frac{p^{2}}{-}} \right)$$
where $\Gamma(s) = \sum_{n=2}^{\infty} \Gamma_{n}(s)$ and $\Gamma_{n}(s) = \frac{1}{2m} \int \frac{d\Phi_{n}}{n!} |\mathcal{M}(1 \to n)|^{2}$
and thus $\Delta_{R}(p) = \frac{i}{p^{2} - m^{2} - \operatorname{Re} \Sigma_{R}(p^{2}) + im\Gamma(p^{2}) + i\epsilon}$
No information as
perturbation theory breaks
down for many loops, but no
physical reason to explode
and not possible to cancel
imaginary part

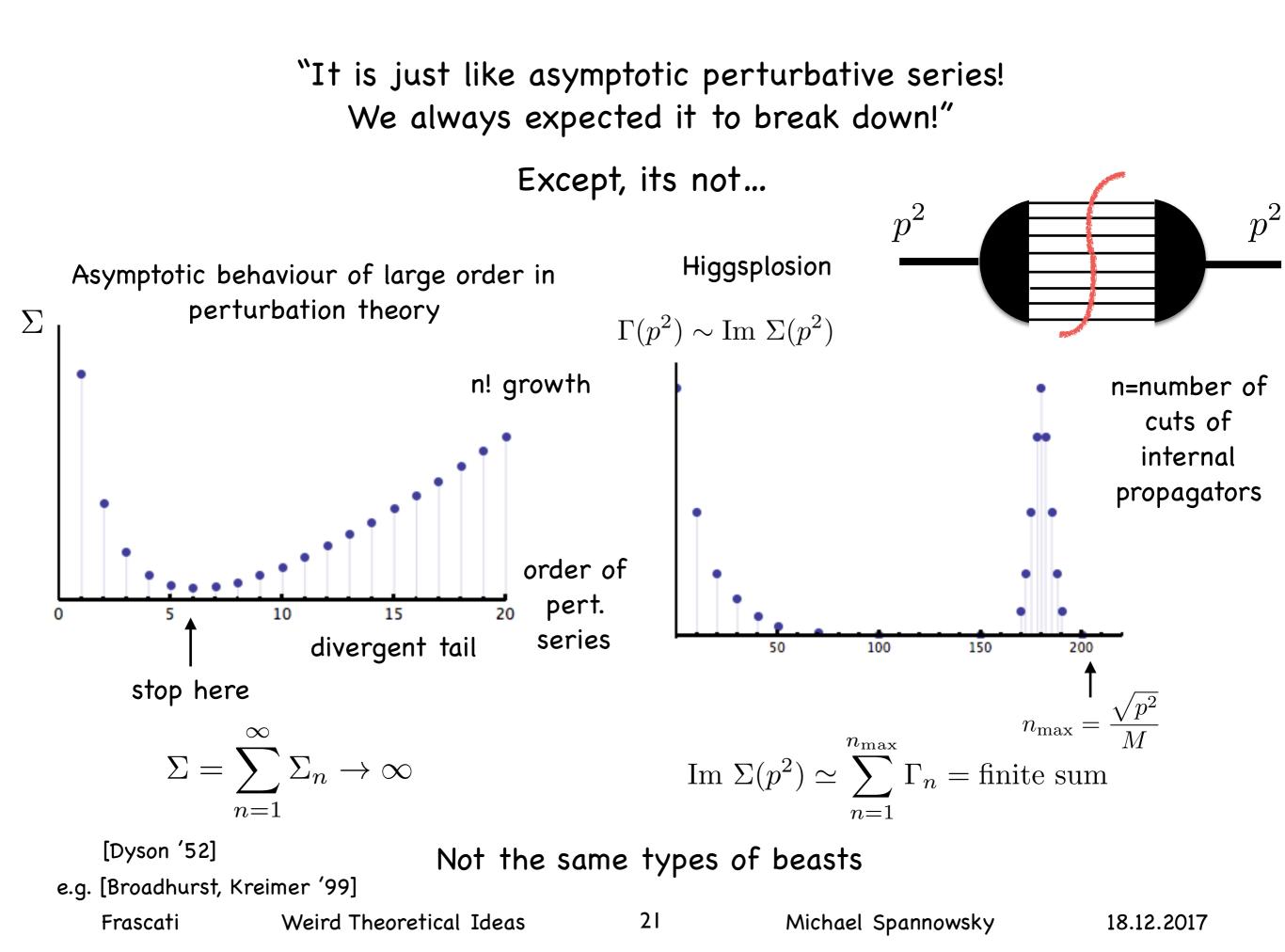
20

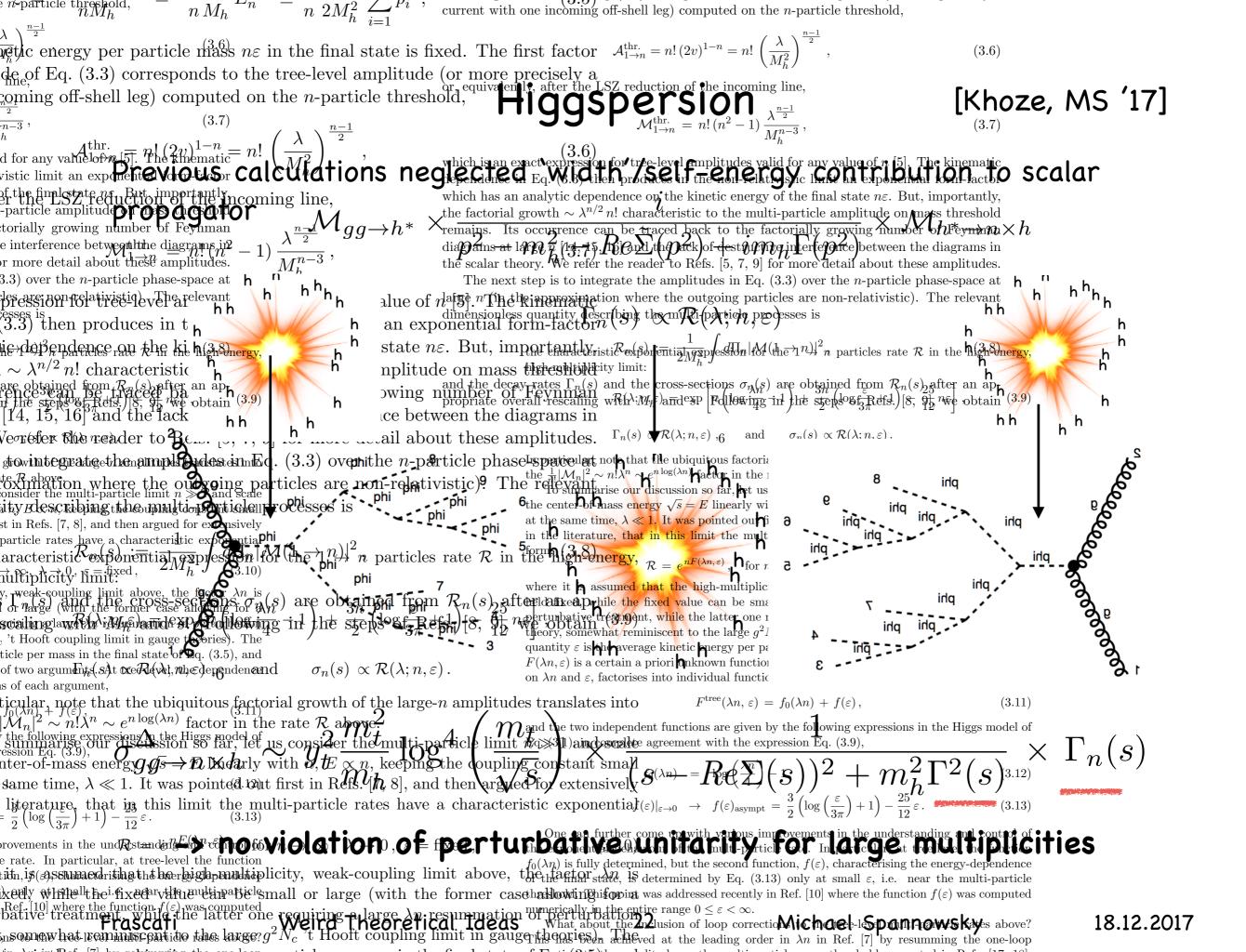
P

р

۵

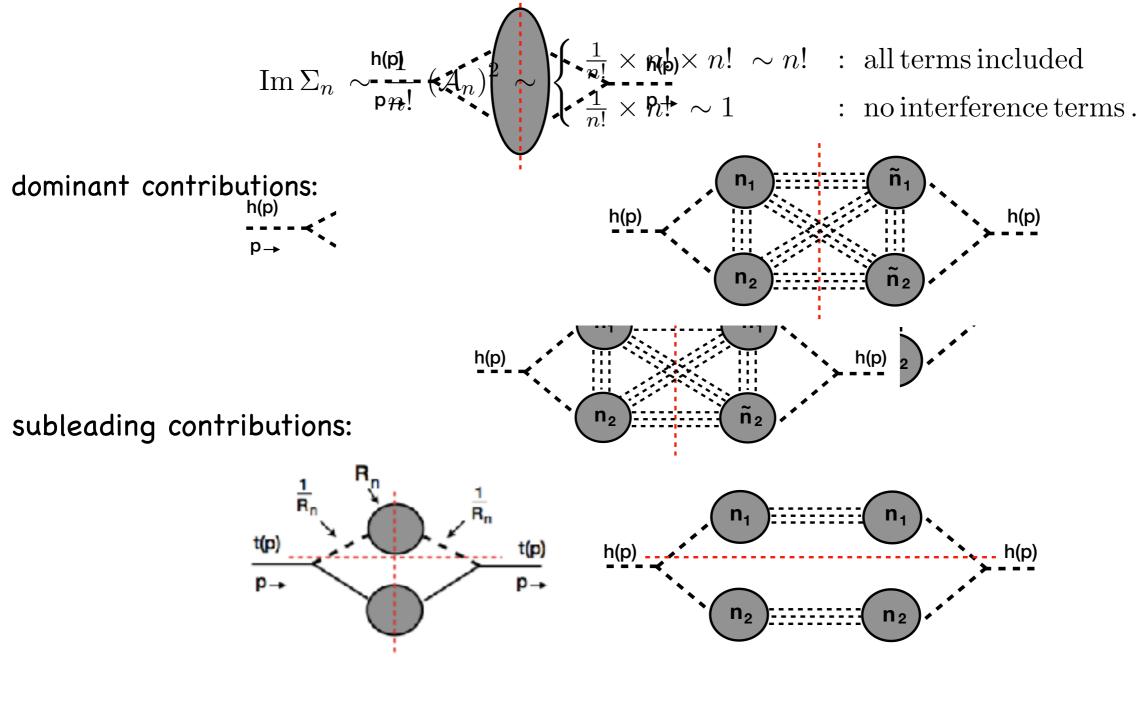
[[]Khoze, MS '17]





Higgspersion in loops

Continuous resummation of the SD propagator does not shut down imaginary part. You need to consider the propagator does not shut down imaginary part.



Weird Theoretical Ideas

Due to Higgsplosion the multi-particle contribution to the width of X explode at $p^2 = s_{\star}$ where $\sqrt{s_{\star}} \simeq \mathcal{O}(25) \text{TeV}$

) It provides a sharp UV cut-off in the integral, possibly at $\,s_{\star} \ll M_X^2$

Hence, the contribution to the Higgs mass amounts to

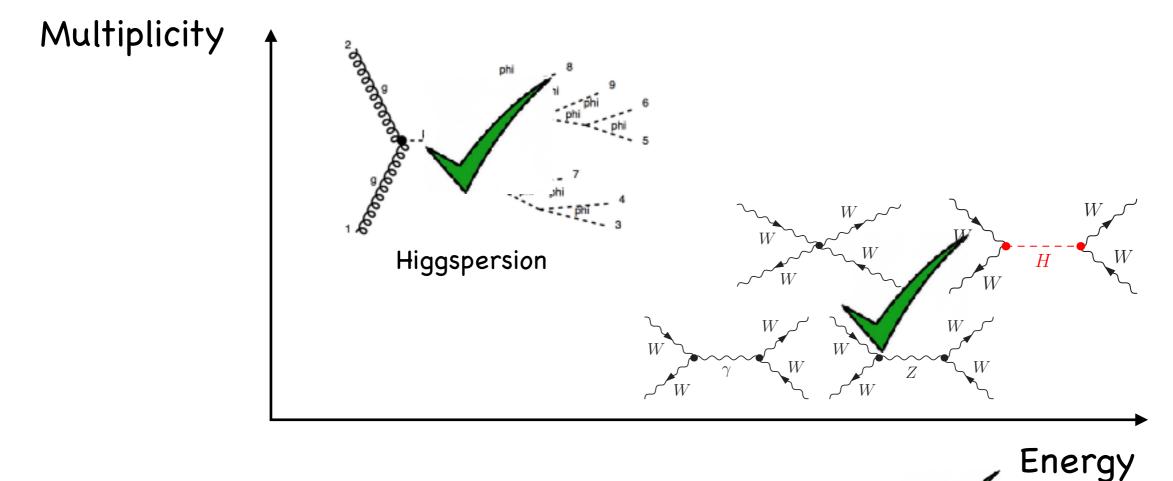
$$\Delta M_h^2 \propto \lambda_P \; \frac{s_\star}{M_X^2} \; s_\star \ll \lambda_P \, M_X^2$$

and thus mends the Hierarchy problem by $\left(\frac{\sqrt{s_{\star}}}{M_X}\right)^4 \simeq \left(\frac{25 \,\mathrm{TeV}}{M_X}\right)^4$

Frascati

Weird Theoretical Ideas

If Higgsplosion is not a mathematical artefact but realised in nature:



+ Hierarchy problem (Loop level)

Higgsplosion

18.12.2017

[Khoze, MS '17]

• SM has new physical scale

$$E_* = C \frac{m_h}{\lambda}$$
 with $C = \text{const.}$

(close analogy to Sphaleron)
$$M_{\rm sph} = \operatorname{const} \frac{m_W}{\alpha_w}$$

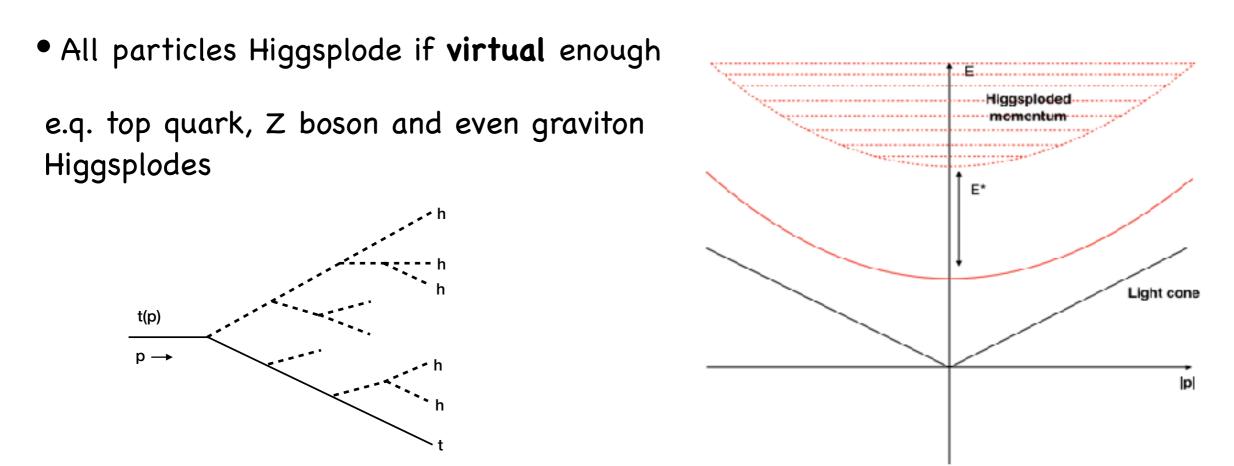
Scaling behaviour of propagator:

$$\Delta(x) := \langle 0|T(\phi(x)\phi(0))|0\rangle \sim \begin{cases} m^2 e^{-m|x|} & : \text{ for } |x| \gg 1/m \\ 1/|x|^2 & : \text{ for } 1/E_* \ll |x| \ll 1/m \\ E_*^2 & : \text{ for } |x| \lesssim 1/E_* \end{cases}$$

for $|x| \lesssim 1/E_*$ one enters the Higgsplosion regime

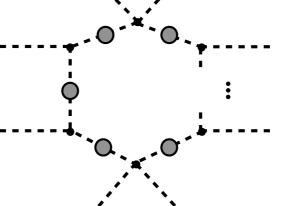
Effect calculable on the lattice?

[Khoze, MS '17]



• As all virtual particles Higgsplode, all virtual corrections are regulated

In full analogy to [Polchinski '84]



• As all loop-diagrams are regulated, i.e. quantum fluctuations are exponentially suppressed, the Standard Model develops an asymptotic fix point.

Classical/Deterministic theory

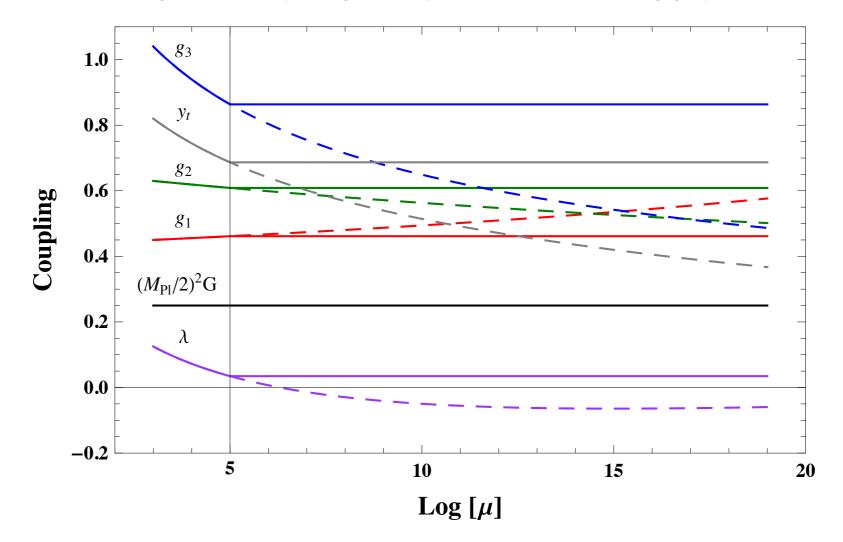
From high scale, quantum fluctuations are emergent phenomenon

• SM is embedded into asymptotically safe theory (see talk by R. Percacci)

Graviton Higgsplodes as well, as do all quantum corrections

Allows to combine QFT and Gravity

Running of couplings in presence of Higgsplosion



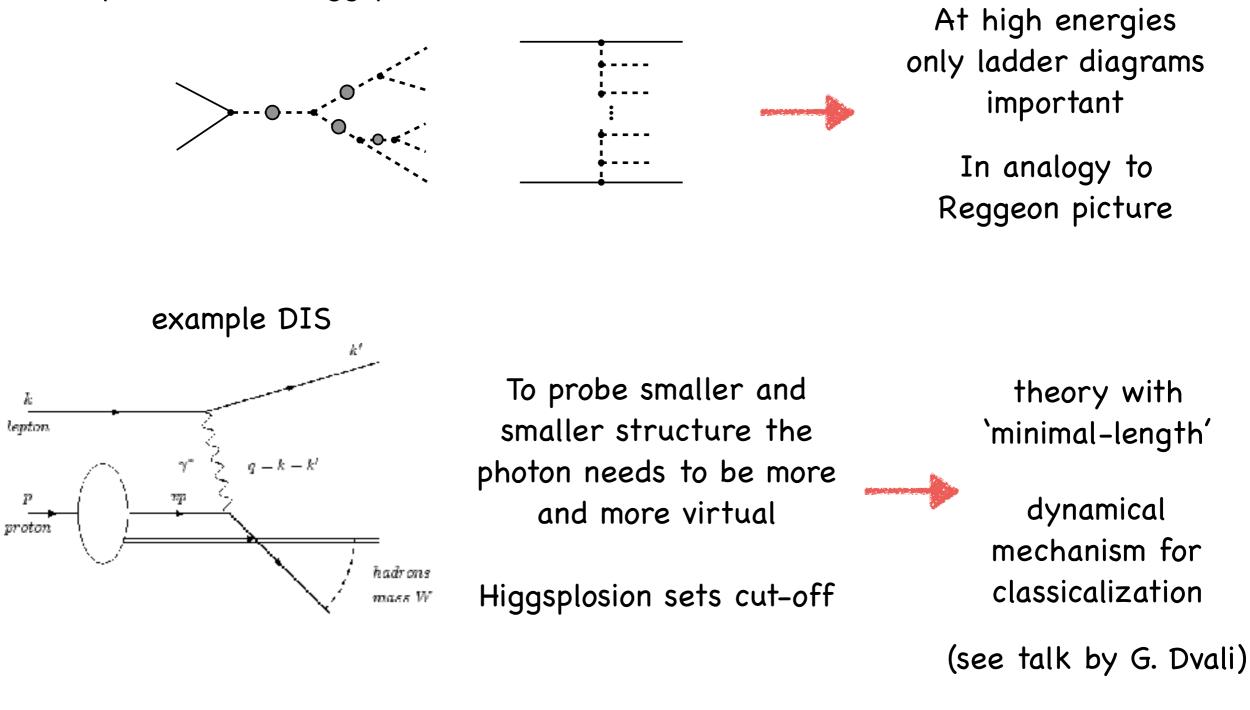
Higgs self-coupling doesnt turn negative

Electroweak potential remains stable

No Landau poles for U(1) and Yukawas

Frascati

• High-energy scatterings are significantly modified, i.e. virtual s-channel particles are Higgspersed



Weird Theoretical Ideas

Questions on implications:

Is Inflation excluded/affected by Higgsplosion?

Not necessarily... for example singlet field S non-minimally coupled to gravity

Take Lagrangian in Jordan frame

$$\mathcal{L} = \sqrt{-g} \left[-\frac{M_{Pl} + \xi_s S^2}{2} R + \partial_\mu H^\dagger \partial^\mu H + (\partial_\mu S)^2 - V(H, S) \right]$$

the scalar potential is $V(H,S) = -\mu_h H^{\dagger} H + \lambda_h (H^{\dagger} H)^2 - \frac{1}{2} \mu_S^2 S^2 + \frac{1}{4} \lambda_S S^4 + \frac{1}{2} \lambda_{Sh} H^{\dagger} H S^2$

During Inflation Higgs mass in Inflaton background large $M_h \simeq \sqrt{\frac{\lambda_{Sh}}{2}S(x)} \simeq \frac{M_{Pl}}{\sqrt{\xi_s}}$

No phase space for S to Higgsplode

Picture changes fundamentally during reheating

Questions on implications:

Is the existence of Axions (light scalars) irreconcilable with Higgsplosion?

QCD-Axion provides predictive framework to address this question

[Grilli di Cortona, Hardy, Vega, Villadoro '16]

$$m_a \simeq \frac{5.7 \cdot 10^{15} \text{eV}}{f_a} \quad \text{and} \quad \lambda_a \equiv \frac{\partial^4 V(a)}{\partial a^4} \Big|_{a=0} \simeq -0.346 \frac{m_a^2}{f_a^2}$$

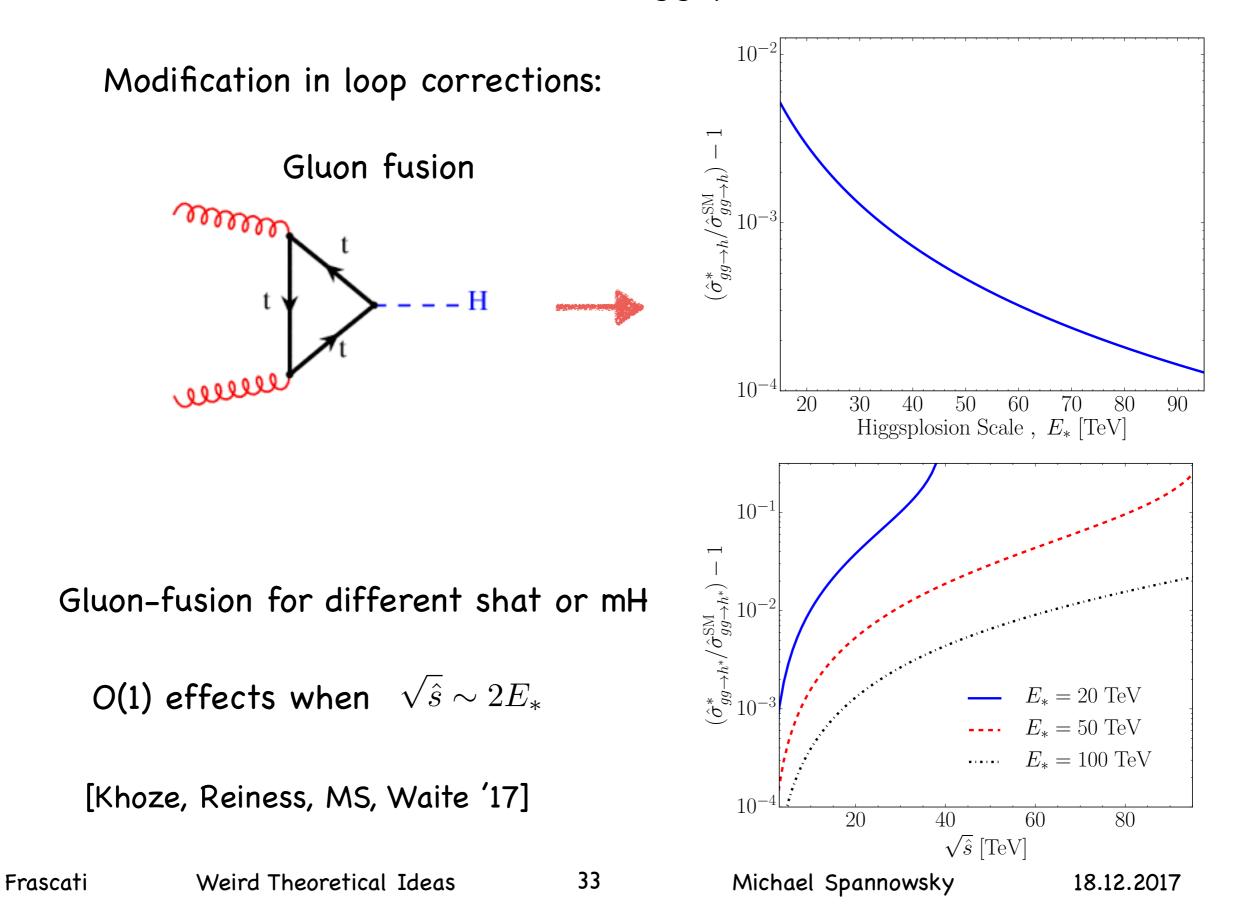
$$\Rightarrow \quad \text{Axionplosion scale} \quad E_*^{\text{Axion}} \simeq 60 \frac{f_a^2}{m_a} \quad \Rightarrow \quad \text{limit} \quad f_a \gtrsim 2.1 \text{ GeV}$$

Sec. 1

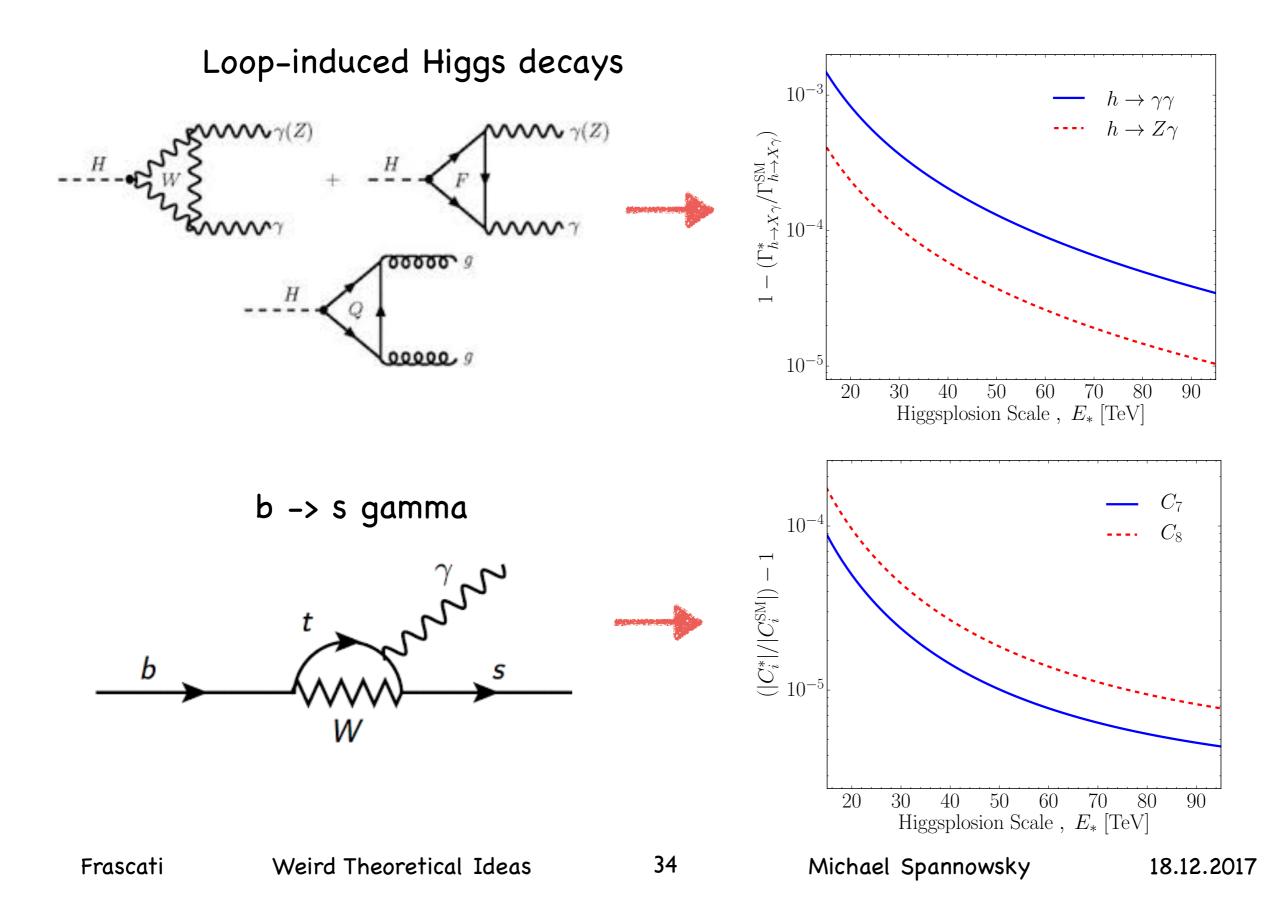
current experimental limit $f_a \gtrsim 10^8 - 10^{17} \text{ GeV}$

If scalars are very weakly coupled they will not trigger X-plosion

Can we discover Higgsplosion?

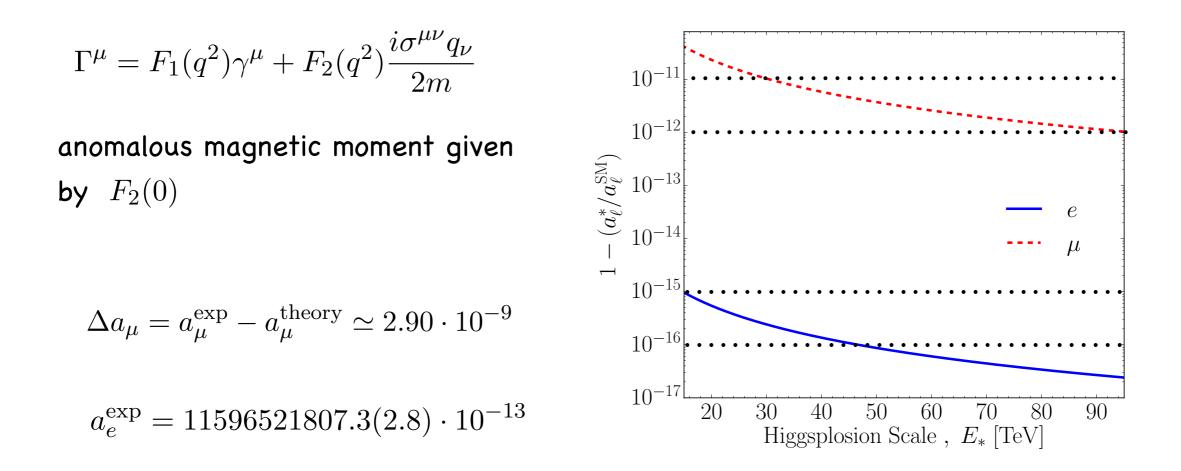


Can we discover Higgsplosion?



Can we discover Higgsplosion?

Anomalous magnetic moment of the muon and electron

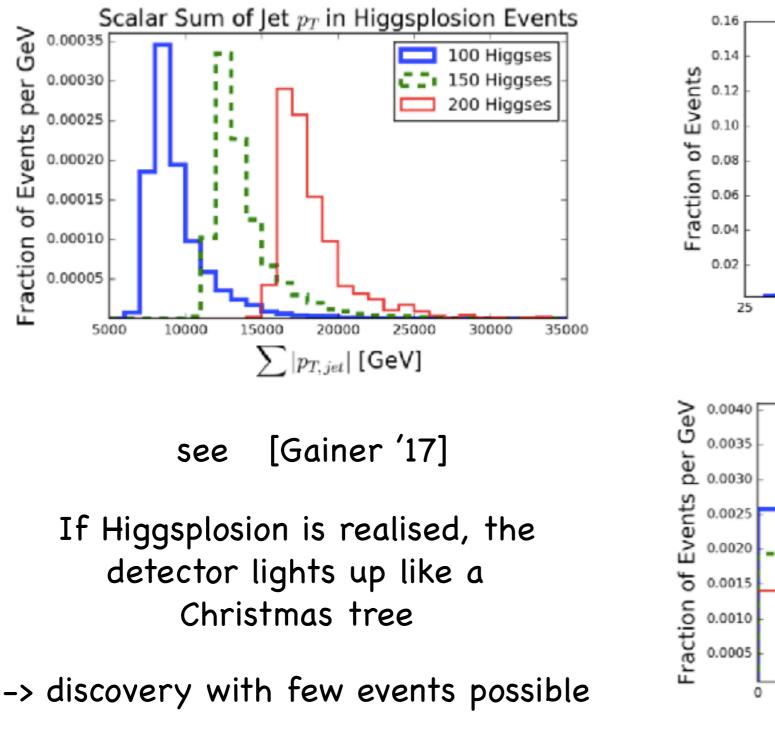


Problem: all corrections scale like \hat{s}/E_*^2

Prospects of direct observation of Higgslposion

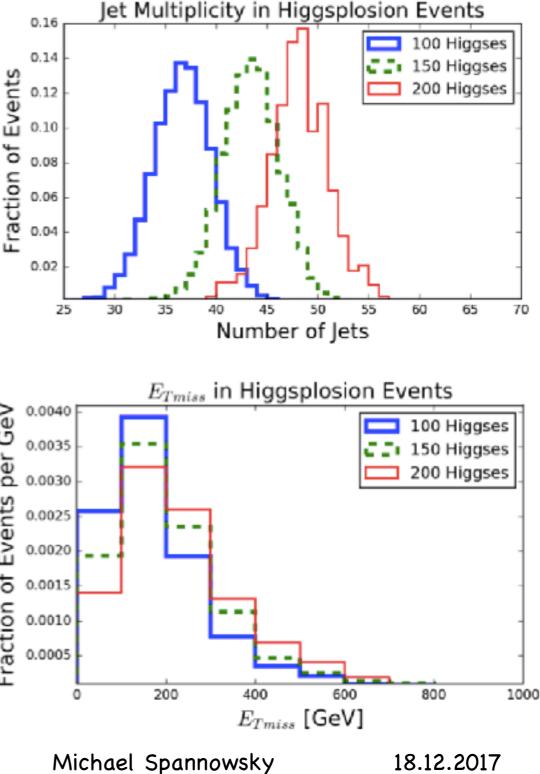
Collider observables for Higgsplosion production

36



Weird Theoretical Ideas

Frascati



Prospects of direct observation of Higgsplosion

$$\begin{array}{l} \text{Partonic gluon-fusion cross} \\ \text{section:} \\ & \sigma_{gg \rightarrow n \times h}^{\Delta} \sim y_t^2 m_t^2 \log^4 \left(\frac{m_t}{\sqrt{s}} \right) \times \left(\frac{\mathcal{R}_n(s)}{\left(1 - \frac{m_h^2}{s} \right)^2 + \mathcal{R}^2(s)} \right) \\ \\ & \sigma_{gg \rightarrow n \times h} \sim \begin{cases} \mathcal{R} & : \text{ for } \sqrt{s} \leq E_* \text{ where } \mathcal{R} \lesssim 1 \\ 1/\mathcal{R} \rightarrow 0 & : \text{ for } \sqrt{s} \geq E_* \text{ where } \mathcal{R} \gg 1 \end{cases} \text{ asymptotic large energy behaviour} \\ \\ & \text{there is smooth-spot for energy into hard process, or subsequent emissions of jets} \\ & \sigma_{gg \rightarrow n \times h} \sim \begin{cases} \mathcal{R} & : \text{ for } \sqrt{s} \ll E_* \text{ where } \mathcal{R} \ll 1 \\ 1 & : \text{ for } \sqrt{s} \geq E_* \text{ where } \mathcal{R} \ll 1 \end{cases} \\ \end{array}$$

Partonic process want to stay `on resonance', where

$$\sum_{n} \mathcal{R}_n(s) = \mathcal{R}(s) \sim 1$$

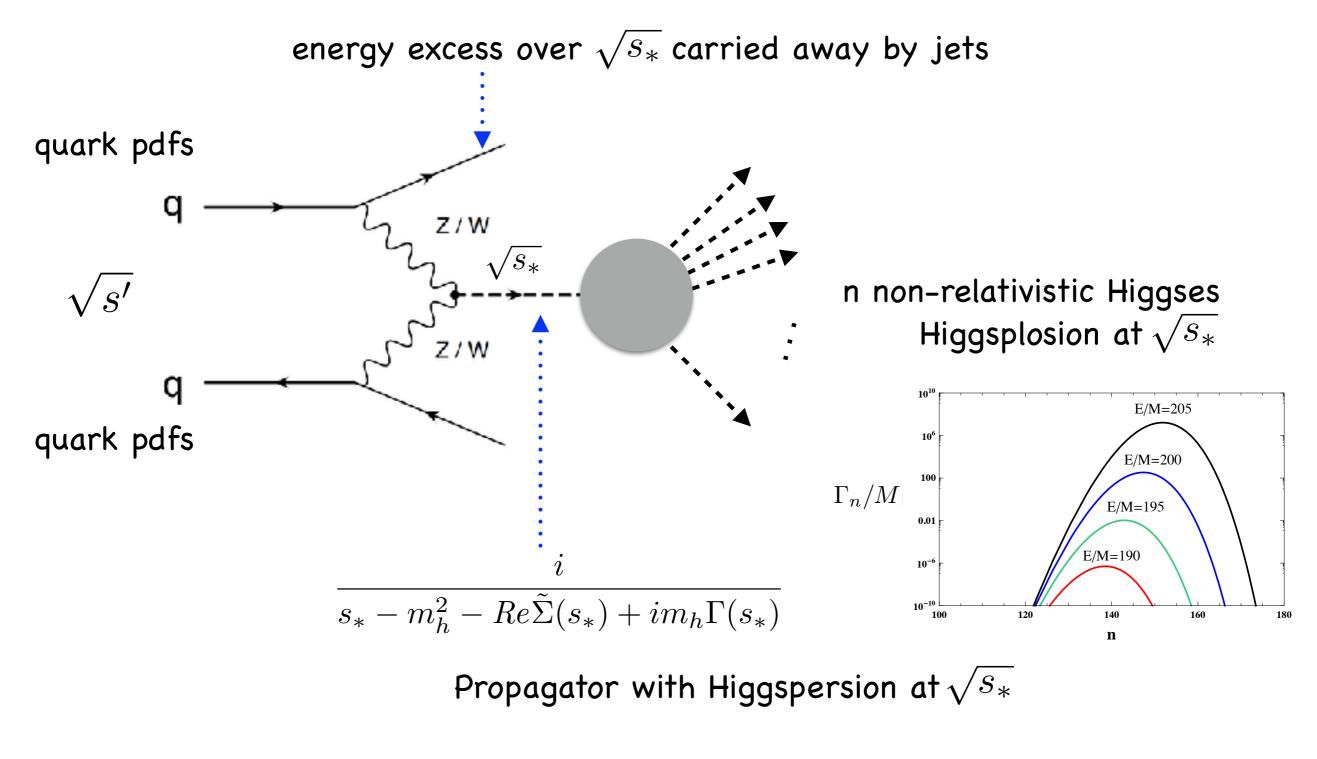
adjust x in hadron collision or emit excessive energy via jets

Frascati

Weird Theoretical Ideas

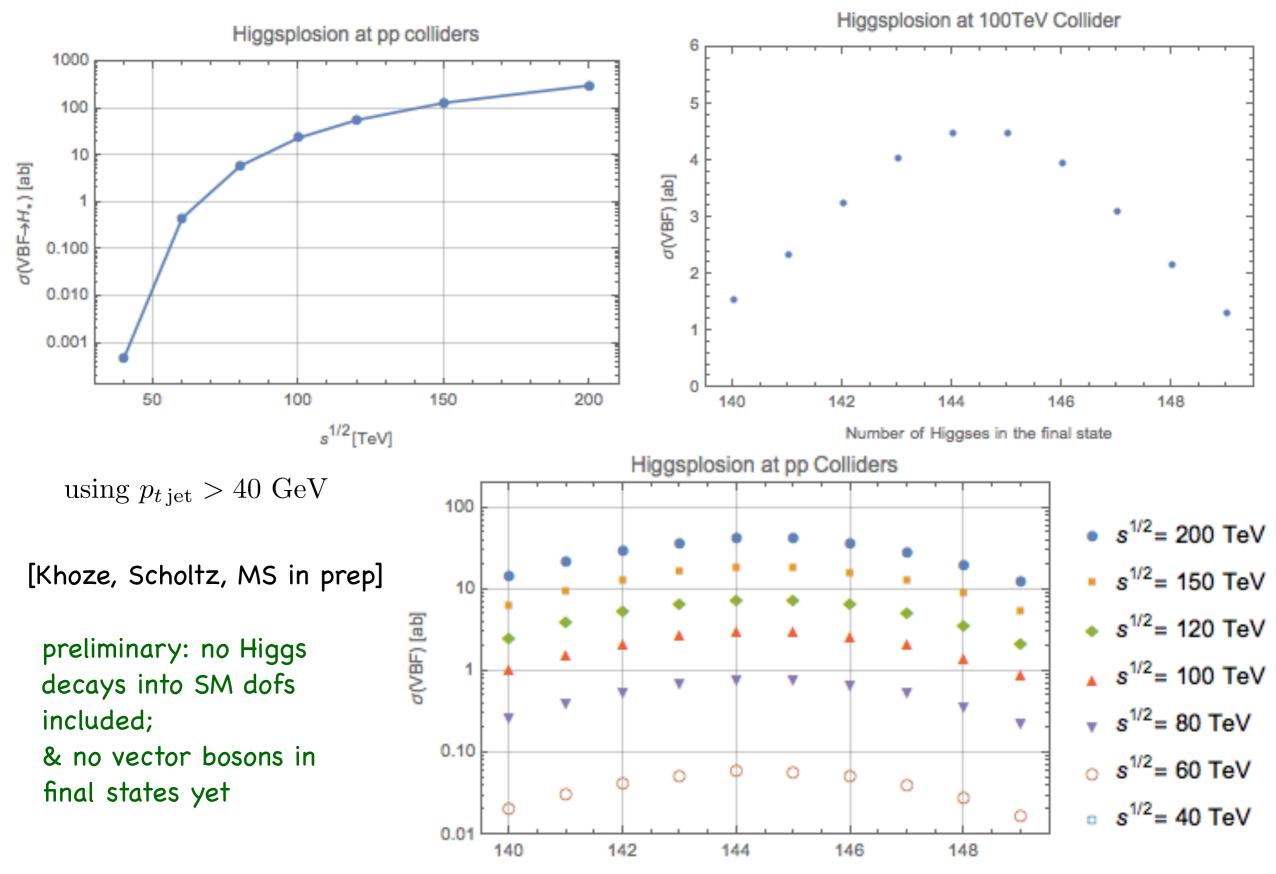
37

Prospects of direct observation of Higgslposion Vector boson fusion at high-energy pp colliders (FCC)

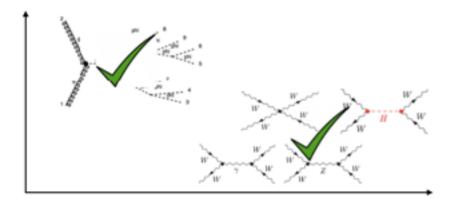


Weird Theoretical Ideas

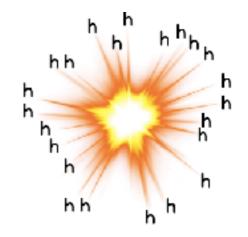
Vector boson fusion at high-energy pp colliders (FCC)



Number of Higgses in the final state



Train of thought:



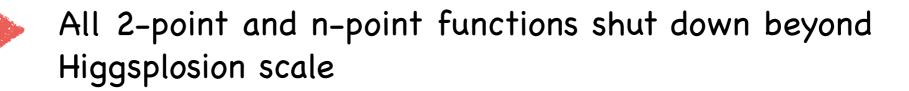
h* -> n h shows factorial growth in classical, 1-loop resummed and semi-classical calculations

) If $\Gamma_n(p^2)$ for any n explodes $\Gamma_{
m tot}(p^2)$ explodes

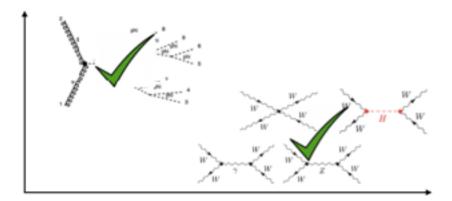
optical theorem (all orders)

Imaginary part of self-energies explode

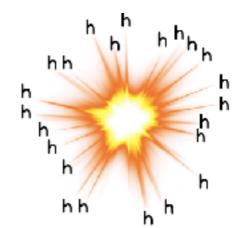
Real part can't cancel imaginary part of self-energy



New physical scale in SM, no Unitarity violation, no Hierarchy problem, asymptotically safe theory, stable vacuum, minimal-length theory



Summary



If Higgsplosion realised it will have spectacular consequences, i.e. many pieces fall into place

The SM has a new energy scale one can test

Currently, idea relies on 20th century QFT

Experimental tests

-> build O(100) TeV collider

-> much improved low energy measurements, e.g. g-2

Theoretical tests

- -> Lattice calculation
- -> Improved semiclassical approach?