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100 fb–1

100 pb–1

10 pb–1

­ Detector & trigger understanding / calibration
- J/ ,Y  and exclusive B-channels as a tester
- Early measurements of well known B-decays, b-production 

B-hadron properties, new decay limits
Understand backgrounds for rare decays

Searches for new CP-violation in weak decays of 
B-mesons; rare decay searches; Λb polarization 

Time
LHC startup 
(Nov. 2009)

  Key elements for B-Physics 
searches:

Efficient low pt muon trigger 

Good muon coverage |

Good track momentum 

resolution and mass resolution

Good vertex resolution
1 fb–1

10 fb–1

Rare decays

B-Physics time-line program 
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Inner Detector (|η|<2.5, B=2T): 
Si Pixels, Si strips, 
Transition Radiation detector 
(straws) 
Precise tracking and vertexing,
e/π separation
Momentum resolution: 
σ/pT ~ 3.8x10-4 pT (GeV) 
0.015

Length  : ~ 46 m 
Radius  : ~ 12 m 
Weight : ~ 7000 
tons
~108 electronic 
channels
3000 km of cables

Muon Spectrometer (|η|<2.7) : air-core toroids with gas-based muon chambers
Muon trigger and measurement with momentum resolution < 10% up to E ~ 1 TeV

EM calorimeter: Pb-LAr Accordion
e/γ trigger, identification and 
measurement
E-resolution: σ/E ~ 10%/E 

HAD calorimetry (||<5): segmentation, 
hermeticity
Fe/scintillator Tiles (central), Cu/W-LAr (fwd)
Trigger and measurement of jets and missing ET
E-resolution: σ/E ~ 50%/E  0.03 

3-level trigger
reducing the 
rate
from 40 MHz to
~200 Hz

The Atlas Detector
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First observed collision candidate at 900 GeV, Nov 23 2009

Note: Solenoid off and Si detectors off or at reduced voltage (no stable beam)
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Overall Statistics for 7 TeV Collisions
• Consider period from 30-March till 19 May (31 

runs )

• Instantaneous luminosity L derived from:

–  MBTS (trigger scintillators at ±3.5m 
from IP) double-side coincidence 
trigger rate

–  LAr offline event selection 
(coincidence of in-time end-cap energy 
deposits)

–  Measurement from dedicated LUCID 
forward detectors, at ±17m from IP

–  Present overall L scale uncertainty 
~20% from systematic uncertainties 
(MC cross-section)

• Total luminosity about 8.3 nb-1

• 94 % of luminosity delivered with Stable Beams 
was recorded by ATLAS



7

Tracking : Data/Simulation Agreement

• Detailed studies comparing data/MC

• dedicated care that Monte Carlo samples reflect 
conditions during data taking (beam spot position,   
inactive modules, noisy channels)

• In general, there is an excellent agreement between   
data and Monte Carlo

Pixel Det. SCT Det.
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Mass Peaks in Minimum Bias Data

• Weak decay reconstruction provides a 
stringent test of tracking performance

– reconstructed Ks and Λ masses close 
to PDG value

– width of the invariant mass peaks 
well reproduced by Monte Carlo
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Observation of D*->D at 7 TeV
Masses and Widths agree well with MC expectations (integrated Luminosity~ 200 μb-1)

Δ(M(Kππ) –M(Kπ)):
Require:
M(Kπ) = 1865±20 MeV
Right = sideband
Results:
ΔM = 145.6±0.1 MeV

M(Kπ):
Require:
ΔM = 145.4±1.5 MeV
Right = sideband
Results:
M(Kπ) = 1869.2±2.4 MeV
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Muon Spectrometer Results
 Cosmics : a lot of studies made with cosmic rays allow to evaluate the level of readiness of our 
Spectrometer

 900 GeV data : Statistics limited, dominantly in the forward region
Data and Monte Carlo are consistent with available statistics (P>4 GeV, pT>2.5 GeV,  ||<2.5) 
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Observation of J/-> at 7 TeV

Gaussian-mean mass: 3.06±0.02 GeV
Resolution: 0.08±0.02 GeV
Number of signal events: 49±12
Number of background events: 28±4
Signal and background are computed in a
 mass range: 2.82-3.30 GeV(3σ around the peak).

Data for integrated luminosity ~ 320 μb-1
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Perspectives

Selected B-Results with 14 TeV Simulation

1)  B-Trigger Strategy
2)  Onia Production and Plarization
3)  B+->J/K+

4)  Bs->J/  and Bd->J/K*0

5)  Bs μμ→
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 Low pLow pTT single / two muons single / two muons
− Control samples, only at very low luminosityControl samples, only at very low luminosity

 Di-muon (common vertex) in the final stateDi-muon (common vertex) in the final state, invariant mass ranges:, invariant mass ranges:
− J/J/and other heavy quarkonia (and other heavy quarkonia () decaying to ) decaying to 
− Very rare B  →Very rare B  → 
− Semileptonic rareSemileptonic rare decaysdecays

B  X→B  X→ ss

− Need to cover sidebandsNeed to cover sidebands
around the signal peakaround the signal peak

− Control measurementsControl measurements of of 
di-muon low-massdi-muon low-mass structure structure 
(bb, cc,(bb, cc, Drell-Yan Drell-Yan 
contributions)contributions)

  Trigger for mass rangeTrigger for mass range    0     0  
M(M() ) << ~ 13 GeV ~ 13 GeV

B-Trigger Strategy



    
Di-muon TriggerDi-muon Trigger

 Two L1 muons

confirm muon at L2
Tracking in small RoI
Mass & vertex cuts

L1_MU

L1_MU

L1_MUL1_MU L1_MU

        Single Trigger 

One L1 muon

confirm muon at L2
Tracking in one large 
RoI,search for the 2nd  muon
Mass & vertex cuts

                FullScan Trigger

One L1 muon

confirm muon at L2
Tracking in entire detector,
search for the 2nd  muon
Mass & vertex cuts

The lowest level 1 muon trigger threshold are 4 GeV, 6 GeV
 
 Single L1 muon triggers:

  Use lowest muon pT threshold and FullScan(time consuming) to give highest efficiency 
at startup
 L1 di-muon triggers:

 Use lowest muon pT threshold (MU4)
 Reduce the background and will be needed  at higher luminosity.

 

Muon or Track

B-Trigger Strategy
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J/

Y(1s)
Bkg w/o 
vertex cuts

Onia Production

 Measurement of prompt J/ to indirect cross-
section relies on separation (and understanding of 
separation) of these two processes  

With 1pb-1 , the ratio R= σ( bb  J/ψ)/σ(pp  J/ψ)→ →  
can be measured as a function of pT, η with a 
statistical precision of 10%.

 Seeded by Level1 Di- trigger
 tracks are fitted to a common vertex
For J/pseudo-proper time < 0.2 ps
(background suppression)

• Expected statistics : 15.000 J/ and       
2000 per 1 pb–1  using di- trigger  
(pT(1,2) > 4 GeV)
S/B = 60 (J/), 10 ()
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P(J/ψ)P(µ-)

P(µ+)

θ*

 In Atlas, measurement of high-pT polarization will allow to distinguish production models
 In order to have a full cos* coverage, combine di-muon and single- trigger measurements

dN
d cos θ

∝1+α cos 2θ

Precision on polarization of Jabout 0.02-0.05 after 10 pb−1 
and  cross-section measurement precision in bins of pT of the 
order of 1% (dependent on the polarisation)

Onia Cross Section and Polarization

µ4µ4
µ10+tATLAS

J/ψ polarisation

J/ψ cross-section

Results at 
extrema of 
polarisation 
states

ϒ polarisation

ϒ cross-section
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B+->J/) K+

• Reference channel for the search for rare B-decays

• Using di-muon trigger (pt>4,pt>6 GeV), expect ~1600 events for 10 pb-1

– Cross section      (stat)        (total)

– Total to              ~3 %          ~15 %

– d/dpT to           ~10 %        ~16-20 %

– Signal lifetime to ~ 2.5 % (stat only)
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 In early data, loose cuts will be 
used (No vertex displacement cut)

 After 10 pb-1 the precision on 
the Bd lifetime will be 10%  and 
similar precision for the Bs mean 
lifetime will be available after 
150 pb-1

 The channel Bs J/ψ  is a promising indirect route to New Physics→ ϕ
–  “Weak mixing phase” s has been calculated in the SM and is very small (-0.0368±0.0018) ϕ

but may be enhanced by BSM processes
 The topologically identical Bd J/ψK0* (15x greater statistics) is the primary background and is →

also essential as a control channel (test of lifetime measurement and tagging calibration)
 Simultaneous fit to mass and decay time can be used to extract signal mass and lifetime from 

data in the channel BdJ/K0
*  with 10pb-1 

Bs->J/)  and Bd->J/)K*0

Parameter
Bd→J/ψK0*  after 10 pb-1 Bs→J/ψ  after 150 pbϕ -1

Simulated value Fit result + st error Simulated value Fit result + st error

Mean lifetime ,ps-1 0.651 0.73 ± 0.07 0.683 0.743 ± 0.051
Mean mass m, GeV 5.279 5.284 ± 0.006 5.343 5.359 ± 0.006
Lifetime resolution σ, 
ps 0.132 ± 0.004 0.152 ± 0.001
Mass resolution σB, 
GeV 0.054 ± 0.006 0.061 ± 0.006

nsig /N 0.16 0.155 ± 0.006 0.018 0.031 ± 0.005

nbck1 /N 0.062 0.595 ± 0.017 0.397 0.379 ± 0.006
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• After about 1 fb-1, it will be possible to extract interesting parameters from the Bs J/ψ  decays→ ϕ

‣ FLAVOUR TAGGING (attempting to determine whether the decay is from a Bs or an anti-Bs) is 
an essential part of this decay. Bs J/ψ  is not self-tagging→ ϕ

‣ In ATLAS, the best flavour tagging performance for Bs J/ψ  is obtained using the jet → ϕ
charge tagging algorithm, which is a “same side” tag

‣ Utilize correlations between the original quark flavour and momenta, and the charge and 
momenta of the fragmentation products (jet charge tagging)

• Calibration of the jet-charge tag will be done with the self-tagging reference channel Bd J/ψK→ 0*, 
and will validate Monte Carlo models for fragmentation

‣ Validated Monte Carlo will be used to determine the tagger quality for Bs J/ψ→ ϕ

Tuned jet charge tagger performance

Parameter Bd→J/ψK0* Bs→J/ψϕ

Luminosity 150 pb-1 1.5 fb-1

Tag Efficiency 0.870 ± 0.003 0.625 ± 0.005

Wrong tag fraction 0.380 ± 0.004 0.374 ± 0.005

Dilution 0.240 ± 0.009 0.251 ± 0.010

Quality 0.050 ± 0.004 0.039 ± 0.003

ATLAS flavour tagging performance
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 ATLAS performance for Bs μμ→

W

Wb

s m

t

m−

ν

SM 

MSSM 

BS →  is highly suppressed in SM (box, penguin diagr.)

– BR SM(Bs→)=(3.42 ± 0.52) × 10−9

– Best exp. limit BR CDF(Bs → )<5.8x10-8 (95%CL) 
Sensitive to New Physics (new particles in the loop)
Main challenge is to control the background, the Atlas strategy is:

– Trigger on events with BS →  candidates using dedicated trigger 
algorithms

– Discriminating variables:

• decay flight length (significance)

• pointing angle between di-muon momentum and vector from primary 
vertex to di-muon vertex 

• isolation (no  hadronic activity around  Bs flight direction)

• mass window around m(Bs)
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The ATLAS Bs μμ program will continue →
throughout the lifetime of the detector

ATLAS performance for Bs μμ→

• After 1 fb-1 ATLAS will have collected O(106) 
dimuons in the invariant mass range 4-7 GeV

– This will allow tuning of cuts and 
potentially training of multivariate 
procedures

• Use B+ J/→ K+ as a reference channel 
( similar to CDF & D0 )

• Branching Ratio will be estimated by 
normalization to the B+ J/→  events

• After 10 fb-1  (1 year @ 1033 ) we expect (SM):
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Summary
• ATLAS detector is performing remarkably well as commissioning for physics 

advances in the month since first 7 TeV collisions:

– Tracking studies very advanced, including detailed understanding of 
material, and first physics results. Precise comparisons of data and 
MC in many domains, signals for meson/baryon resonances and charm

– First significant number of collision muons have led to J/ψ->μμ 
observation, and muon spectrometer is performing very well

• An efficient, fast and clean di-muon trigger scheme will allow ATLAS to 
collect large numbers of B-hadron decays involving μμ final states, throughout 
the lifetime of the experiment

• Early B-Physics data will provide valuable information on the detector 
performance, but will also allow calibration studies in support of New Physics 
searches.
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