Charmed Mesons and Charmonia: Three-Meson Strong Couplings

Wolfgang Lucha,¹ Dmitri Melikhov,^{2,3} Hagop Sazdjian,⁴ and Silvano Simula⁵

HEPHY, Austrian Academy of Sciences, Vienna, Austria
 SINP, Moscow State University, Russia
 Faculty of Physics, University of Vienna, Austria
 IPN, CNRS/IN2P3, Universitè Paris-Sud, Orsay, France
 INFN, Sezione di Roma Tre, Roma, Italy

Couplings, form factors & decay constants

By use of a relativistic dispersion approach relying on the constituent-quark model, we study the strong couplings $g_{PP'V}$ and $g_{PV'V}$ for vector mesons V, with polarization vectors ε_{μ} , and pseudoscalar mesons P, in the amplitudes

$$\langle P'(p_2) V(q) | P(p_1) \rangle = -\frac{g_{PP'V}}{2} (p_1 + p_2)^{\mu} \varepsilon_{\mu}^*(q) ,$$

$$\langle V'(p_2) V(q) | P(p_1) \rangle = -g_{PV'V} \epsilon_{\varepsilon^*(q) \varepsilon^*(p_2) p_1 p_2} , \qquad q \equiv p_1 - p_2 .$$

Of particular interest to us will be the case when there is, at least, one of the charmonia J/ψ or η_c among this meson triple. These strong couplings enter into the residues of poles in corresponding transition form factors for $q^2 > 0$ arising from intermediate meson states. The form factors relevant for us are

$$\langle P'(p_2)|\bar{q}_2 \,\gamma_{\mu} \,q_1|P(p_1)\rangle = F_{+}^{P\to P'}(q^2) \,(p_1+p_2)_{\mu} + \cdots ,$$

$$\langle V(p_2)|\bar{q}_2 \,\gamma_{\mu} \,q_1|P(p_1)\rangle = \frac{2 \,V^{P\to V}(q^2)}{M_P + M_V} \,\epsilon_{\mu \,\varepsilon^*(p_2) \,p_1 \,p_2} ,$$

$$\langle V(p_2)|\bar{q}_2 \,\gamma_{\mu} \,\gamma_5 \,q_1|P(p_1)\rangle = \mathrm{i} \,q_{\mu} \,(\varepsilon^*(p_2) \,p_1) \,\frac{2 \,M_V}{q^2} \,A_0^{P\to V}(q^2) + \cdots .$$

With the decay constants of the vector and pseudoscalar mesons f_V and f_P , defined in terms of the meson-to-vacuum transition amplitude of the vector quark current $\bar{q}_2 \gamma_\mu q_1$ or axial-vector quark current $\bar{q}_2 \gamma_\mu \gamma_5 q_1$ according to

$$\langle 0|\bar{q}_1\,\gamma_\mu\,q_2|V(q)\rangle = f_V\,M_V\,\varepsilon_\mu(q)\;, \qquad \langle 0|\bar{q}_1\,\gamma_\mu\,\gamma_5\,q_2|P(q)\rangle = \mathrm{i}\,f_P\,q_\mu\;,$$

the poles, at pseudoscalar and vector resonances P_R and V_R , are of the form

$$F_{+}^{P \to P'}(q^{2}) = \frac{g_{PP'V_{R}} f_{V_{R}}}{2 M_{V_{R}}} \frac{1}{1 - \frac{q^{2}}{M_{V_{R}}^{2}}} + \cdots ,$$

$$V^{P \to V}(q^{2}) = \frac{(M_{V} + M_{P}) g_{PVV_{R}} f_{V_{R}}}{2 M_{V_{R}}} \frac{1}{1 - \frac{q^{2}}{M_{V_{R}}^{2}}} + \cdots ,$$

$$A_{0}^{P \to V}(q^{2}) = \frac{g_{PP_{R}V} f_{P_{R}}}{2 M_{V}} \frac{1}{1 - \frac{q^{2}}{M_{P_{R}}^{2}}} + \cdots .$$

Quark-model-based dispersion approach

We compute the form factors $F_+^{P\to P'}(q^2)$, $V^{P\to V}(q^2)$, and $A_0^{P\to V}(q^2)$ within the framework of a relativistic constituent-quark picture [1]. To this end, we must relate the currents defining the form factors to their constituent-quark (Q) counterparts: this task is easily accomplished for heavy-quark currents,

$$\bar{q}_1 \gamma_\mu q_2 = g_V \, \bar{Q}_1 \gamma_\mu Q_2 + \cdots , \qquad \bar{q}_1 \gamma_\mu \gamma_5 q_2 = g_A \, \bar{Q}_1 \gamma_\mu \gamma_5 Q_2 + \cdots ,$$

by introducing form factors g_V and g_A , but not so simple for light quarks [2]. Numerically, we employ [3], for the constituent-quark masses and couplings, $m_d = m_u = 0.23 \text{ GeV}$, $m_s = 0.35 \text{ GeV}$, $m_c = 1.45 \text{ GeV}$ and $g_V = g_A = 1$. The relativistic dispersion formalism allows us to represent the quantities of interest by integrals, over invariant masses of intermediate quark—antiquark states, of spectral densities derived from (one-loop) Feynman diagrams and wave functions of the involved pseudoscalar or vector mesons [4], of the form

$$\phi_{P,V}(s) = \frac{\pi}{\sqrt{2}} \frac{\sqrt{s^2 - (m_1^2 - m^2)^2}}{\sqrt{s - (m_1 - m)^2}} \frac{w_{P,V}(k^2)}{s^{3/4}},$$

$$k^2 = \frac{(s - m_1^2 - m^2)^2 - 4m_1^2 m^2}{4s}, \qquad \int dk \, k^2 \, w_{P,V}^2(k^2) = 1.$$

For the radial meson wave functions $w_{P,V}(k^2)$, we assume Gaussian shapes:

$$w_{P,V}(k^2) \propto \exp\left(-\frac{k^2}{2\beta_{P,V}^2}\right).$$

The decay constants $f_{P,V}$ become spectral integrals of densities $\rho_{P,V}(s)$ and the form factors $F_+^{P\to P'}(q^2)$, $V^{P\to V}(q^2)$ and $A_0^{P\to V}(q^2)$, generically labelled $\mathcal{F}(q^2)$, double dispersion integrals of double spectral densities $\Delta(s_1, s_2, q^2)$:

$$f_{P,V} = \int ds \, \phi_{P,V}(s) \, \rho_{P,V}(s) ,$$

 $\mathcal{F}(q^2) = \int ds_1 \, \phi_1(s_1) \int ds_2 \, \phi_2(s_2) \, \Delta(s_1, s_2, q^2) .$

 $D_{(s)}^{(*)}$ and $c\bar{c}$ meson masses M, decay constants f and slope parameters $\beta[5]$:

Meson	D	D^*	D_s	D_s^*	η_c	J/ψ
M (GeV)	1.87	2.010	1.97	2.11	2.980	3.097
f (MeV)	206 ± 8	260 ± 10	248 ± 2.5	311 ± 9	394.7 ± 2.4	405 ± 7
β (GeV)	0.475	0.48	0.545	0.54	0.77	0.68

Feynman graphs for transitions induced by quark vector currents $\bar{Q}_1 \gamma_\mu Q_2$:

All form factors \mathcal{F} , computed off their resonances R, can be interpolated by

$$\mathcal{F}(q^2) = \frac{\mathcal{F}(0)}{\left(1 - \frac{q^2}{M_R^2}\right) \left(1 - \frac{\sigma_1 q^2}{M_R^2} + \frac{\sigma_2 q^4}{M_R^4}\right)} , \qquad \text{Res } \mathcal{F}(M_R^2) = \frac{\mathcal{F}(0)}{1 - \sigma_1 + \sigma_2} .$$

From the residues, involving the meson masses, decay constants, and strong couplings, the latter are derived, by combined fits if present more than once.

Strong couplings: $\eta_c \eta_c J/\psi$ and $\eta_c J/\psi J/\psi$

As one example representative for the general situation, consider the strong coupling $g_{\eta_c\eta_c\psi}$ of two pseudoscalar η_c mesons and one vector J/ψ meson [6] by realizing that this quantity enters in and therefore can be extracted from

- the residue Res $F_+^{\eta_c \to \eta_c}(M_\psi^2)$ of the pole at $q^2 = M_\psi^2$ of the form factor $F_+^{\eta_c \to \eta_c}(q^2)$ for the ("elastic") transition $\eta_c \to \eta_c$ enabled by the current $\bar{c} \gamma_\mu c$ coupling with decay constant f_ψ to the vector resonance J/ψ and
- the residue Res $A_0^{\eta_c \to \psi}(M_{\eta_c}^2)$ of the pole at $q^2 = M_{\eta_c}^2$ of the form factor $A_0^{\eta_c \to \psi}(q^2)$ for the transition $\eta_c \to J/\psi$ induced by the current $\bar{c} \gamma_\mu \gamma_5 c$ that couples, with decay constant f_{η_c} , to the pseudoscalar resonance η_c :

Res
$$F_{+}^{\eta_c \to \eta_c}(M_{\psi}^2) = g_{\eta_c \eta_c \psi} \frac{f_{\psi}}{2 M_{\psi}}$$
, Res $A_0^{\eta_c \to \psi}(M_{\eta_c}^2) = g_{\eta_c \eta_c \psi} \frac{f_{\eta_c}}{2 M_{\psi}}$.

Upon determination of the meson wave-function parameters β by requiring the dispersion representation of the decay constants $f_{P,V}$ to reproduce their known values, the strong couplings may be calculated, individually for each transition of interest, from the spectral representation of its associated form factor: our couplings' off-resonance behaviour exhibits excellent agreement.

Behaviour of the off-shell strong coupling $g_{\eta_c\eta_c\psi}(x)$ as a function of $x \equiv \frac{q^2}{M_R^2}$, $R = J/\psi$, η_c , from the two transitions $\eta_c \to \eta_c$ (red) and $\eta_c \to J/\psi$ (blue):

A combined fit with the four parameters $g_{\eta_c\eta_c\psi}$, $A_0^{\eta_c\to\psi}(0)$, $\sigma_1^{\mathcal{F}}$ then yields [6] $g_{\eta_c\eta_c\psi} = 25.8 \pm 1.7$.

Along a similar route, we find [6] for the strong coupling of one pseudoscalar η_c meson and two vector J/ψ mesons, $g_{\eta_c\psi\psi}$, entering in only one transition,

$$g_{\eta_c\psi\psi} = (10.6 \pm 1.5) \text{ GeV}^{-1}$$
.

Strong couplings: η_c and J/ψ to D and D^*

Allowing also for currents with a d or s quark (and merging strong-coupling multiple occurrences, all of them showing nearly perfect concord), we get [6]

• for the strong J/ψ or η_c couplings to non-strange charmed mesons $D^{(*)}$

$$g_{DD\psi} = 26.04 \pm 1.43$$
,
 $g_{DD^*\psi} = (10.7 \pm 0.4) \text{ GeV}^{-1}$,
 $g_{DD^*\eta_c} = 15.51 \pm 0.45$,
 $g_{D^*D^*\eta_c} = (9.76 \pm 0.32) \text{ GeV}^{-1}$,

• and for the strong J/ψ or η_c couplings to strange charmed mesons $D_s^{(*)}$

$$g_{D_s D_s \psi} = 23.83 \pm 0.78 ,$$

 $g_{D_s D_s^* \psi} = (9.6 \pm 0.8) \text{ GeV}^{-1} ,$
 $g_{D_s D_s^* \eta_c} = 14.15 \pm 0.52 ,$
 $g_{D_s^* D_s^* \eta_c} = (8.27 \pm 0.37) \text{ GeV}^{-1} .$

Dependence of the off-shell strong couplings $g_{D\hat{D}\psi}(x) = \frac{2M_{\psi}}{f_D} \hat{x} A_0^{D\to\psi}(q^2)$ (left, blue), $g_{DD\hat{\psi}}(x) = \frac{2M_{\psi}}{f_{\psi}} \hat{x} F_{+}^{D\to D}(q^2)$ (left, red), $\hat{x} \equiv 1 - x$, $g_{D\hat{D}^*\psi}(x)$ (right, red), $g_{DD^*\hat{\psi}}(x)$ (right, blue) and $g_{\hat{D}D^*\psi}(x)$ (right, green) on $x \equiv \frac{q^2}{M_R^2}$:

Observations, comparison and conclusions

- Successful extrapolations of all interpolated results for strong couplings derived at $q^2 < 0$ confirm the presence of the poles expected for $q^2 > 0$.
- Concerning SU(3) breaking, the net outcome of replacing a d quark by the s quark is a reduction of the affected strong coupling by about 10%.
- Despite undeniable similarities of the approaches, our $D_{(s)}^{(*)}$ couplings [6] are more than twice as large as the results arising from QCD sum rules.

Comparison of our strong-coupling predictions with QCD sum-rule results:

Coupling	$g_{DD\psi}$	$g_{DD^*\psi} (\text{GeV}^{-1})$	$g_{D_sD_s\psi}$	$g_{D_s D_s^* \psi} (\mathrm{GeV}^{-1})$
This work	26.04 ± 1.43	10.7 ± 0.4	23.83 ± 0.78	9.6 ± 0.8
Sum rules	$11.6 \pm 1.8 \ [7]$	4.0 ± 0.6 [7]	11.96 ± 1.34 [8]	4.30 ± 1.53 [9]

References

- W. Lucha, F. F. Schöberl & D. Gromes, Phys. Rep. 200 (1991) 127; F. Cardarelli, E. Pace, G. Salmè & S. Simula, Phys. Lett. B 357 (1995) 267, arXiv:nucl-th/9507037; R. N. Faustov & V. O. Galkin, Z. Phys. C 66 (1995) 119.
- [2] D. Melikhov & B. Stech, Phys. Rev. D 74 (2006) 034022, arXiv:hep-ph/0606203; W. Lucha, D. Melikhov & S. Simula, Phys. Rev. D 74 (2006) 054004, arXiv:hep-ph/0606281.
- [3] D. Melikhov & B. Stech, Phys. Rev. D 62 (2000) 014006, arXiv:hep-ph/0001113.
- [4] D. Melikhov, Eur. Phys. J. direct C4 (2002) 2, arXiv:hep-ph/0110087.
- [5] C. T. H. Davies et al., Phys. Rev. D 82 (2010) 114504, arXiv:1008.4018 [hep-lat]; W. Lucha, D. Melikhov & S. Simula, Phys. Lett. B 701 (2011) 82, arXiv:1101.5986 [hep-ph]; D. Bečirević et al., JHEP 1202 (2012) 042, arXiv:1201.4039 [hep-lat]; G. C. Donald et al., Phys. Rev. D 86 (2012) 094501, arXiv:1208.2855 [hep-lat]; W. Lucha, D. Melikhov & S. Simula, Phys. Lett. B 735 (2014) 12, arXiv:1404.0293 [hep-ph]; K. A. Olive et al. (PDG), Chin. Phys. C 38 (2014) 090001.
- [6] W. Lucha, D. Melikhov, H. Sazdjian & S. Simula, Phys. Rev. D 93 (2016) 016004, 93 (2016) 019902(E), arXiv:1506.09213 [hep-ph].
- [7] R. D. Matheus et al., Int. J. Mod. Phys. E 14 (2005) 555.
- [8] B. Osório Rodrigues, M. E. Bracco & M. Chiapparini, Nucl. Phys. A **929** (2014) 143; arXiv: 1309.1637 [hep-ph].
- [9] B. Osório Rodrigues et al., Eur. Phys. J. A **51** (2015) 28; arXiv:1501.03088 [hep-ph].