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Goldstonic quark—antiquark bound states

Within quantum chromodynamics, the pions or, as a matter of fact, all light
pseudoscalar mesons must be interpretable as both quark—antiquark bound
states and almost massless (pseudo) Goldstone bosons of the spontaneously
—and to a minor degree even explicitly—broken chiral symmetries of QCD.

Relativistic quantum field theory describes bound states by Bethe—Salpeter
amplitudes ®(p) controlled by some homogeneous Bethe-Salpeter equation
defined, for two bound particles of individual and relative momenta p; o and
p, by their propagators S(p; 2) and an integral kernel K (p, ¢) encompassing
their interactions, suppressing dependences on the total momentum p;+po:

P(p) = (2;)4 Si(p1) /d4q K(p,q) ®(q) Sa(—p2) -

Suitably adapted inversion techniques|1] allow us to retrieve the underlying

interactions analytically in form of a (configuration-space) central potential
V(r), r = |x|, from presumed solutions to the Bethe-Salpeter equation [2].

By that, we are put in a position to construct exact analytic Bethe-Salpeter
solutions for all massless pseudoscalar mesons|3] in the sense of establishing
rigorous analytic relationships between interactions and resulting solutions:
all analytic findings 4] may then be confronted with numerical outcomes|[5].
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Crucial simplifying-assumptions sequence

1. Assuming, for any involved quark, both instantaneous interactions and
free propagation with a mass dubbed constituent, simplifies the Bethe—
Salpeter equation to a bound-state equation for the Salpeter amplitude

b(p) o / dpo®(p) |

For a spin-5 fermion and a Spin—% antifermion of equal masses m bound

to a spin-singlet state (which is the case for, e.g., pseudoscalar mesons),
this wave function involves only two independent components, 1 2(p):

o(p) = [sol(p) i (’yb;g; m) +<p2(p)] Y5

E(p)=vp*+m?, p=|pl|.

2. Upon assuming the quark interactions in the kernel to respect spherical

and Fierz symmetries, the bound-state equation for ¢(p) becomes a set

of two coupled radial eigenvalue equations for the bound-state mass M:
o0

2E(p) pa(p) + 2/ ?;Wq)z Vi(p,q) w2(q) = M p1(p) ,

2E(p) p1(p) = M p2(p) ,

Vip,q) = i—Z/dr sin(pr)sin(qgr) V(r) , q=|q|.

o0

3. In the truly massless Goldstone case M = 0, the system decouples, one
component vanishes [p1(p) = 0], and the surviving component satisfies
o
dg ¢”
E +

0
Denoting by T'(r) the Fourier transform of the kinetic term E(p) ¢2(p),
V' (r) can be found from the latter’s configuration-space representation:
T(r)
pa(r)

V(p,q)pa(q) =0.

V(r)=—



Constraints on Bethe—Salpeter amplitude

Information on ys(p) can be extracted from the full quark propagator S(p),
determined by its mass function M (p?) and a renormalization factor Z(p?):

o iZ(p) _
S(p)—ﬁ_M(p2>+i€, P=p", el0.

Studies of S(p) within the Dyson—Schwinger framework, preferably done in
Euclidean space indicated by underlined variables, entail crucial insights. In

the chiral limit, a Ward—Takahashi identity relates|6] this quark propagator
to the flavour-nonsinglet pseudoscalar-meson Bethe-Salpeter amplitude [3]:
M (k%)

d(k) ~ i +1\22<E2)

v5 + subleading contributions .

In order to devise an analytic scenario, we exploit two pieces of information:

1. Phenomenologically sound Dyson-Schwinger models 7] get for M (k?),
in the chiral limit, at large k* a decrease basically proportional to 1 / k.

2. From axiomatic QF T, we may infer[8] that the presence in M (k?) of an
inflexion point at spacelike momenta k* > 0 entails quark confinement.

Of course, such requirements on M (k?) are reflected by ®(k). A compatible
ansatz for (&), involving a mass parameter p and a mixing parameter 7, is
1 nk”
o E (4 2)
An integration w.r.t. the Euclidean momentum’s time component results in
2 .2
902(]9) X (pg +1M2>3/2 +1 (£2 152)/5Zi2 ) p= ‘p‘ )

D(k) =

2| 5 >0, nek.

in configuration space expressible in terms of modified Bessel functions K,

pa(r) oc 4 (1 +n) Ko(pr) —npr Ki(pr) .
Ifn < —1orn > 0, py(r) has one zero, which induces a singularity in V' (r).

For special values of m/p, V() can be given by an analytic expression|[3,4].
Henceforth, any quantity is understood in units of the adequate power of f.

3



Confining potentials: Analytic results [3,4]

As consequence of our particular ansatz for po(r), forn # —1 all V' (r) must

develop, at spatial origin, a logarithmically softened Coulombic singularity:

const
V(r) 0 e o0 (const > 0)  formp# —1.

Analytically manageable scenario of massless quarks (m = 0)

For our oo(r), V (r) involves modified Bessel (1,) and Struve (L,,) functions
and rises—confiningly—to infinity either at the zero of py(r) or for r — oo:
N(r)

V)= 5y

N(ry=na[d+n@4+rH)][Lo(r) — Lo(r)]
+7m(4+5n)r[Li(r)—Li(r)]+4(2+3n)r,
D(ry=2r[4(1+n) Kor)—nr Ki(r)] .

V (r) of the Fierz-symmetric kernel K (p, q) for m = 0 and mixture n = 0[3]
(black), n =1 (red), n = 2 (magenta), n = —0.5 (blue), orn = —1 (violet):
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Analytically expressible case: quarks of common mass m = u

Here, T'(r) exhibits a mixture of Yukawa and exponential behaviour. Thus,

w8+ n(B8—3r)exp(—r) . const X
Y S TR R K - K] oV e

V (r) of the Fierz-symmetric kernel K (p, q) for m = 1 and mixture n = 0[3]
(black), n = 0.5 (red), n = 1 (magenta), n = 2 (blue), and n = —1 (violet):
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Test of reliability: Numerical derivation [5]

We check our results using the pointwise form of the chiral-limit quark mass
function M (k?), provided graphically in Ref. [7]: We parametrize M (k?) by

0.0706 GeV

1 p 1 4870752
T <0.487 Gev2)

k?
M(K*) = 0.708 GeV —— +
(&) ’ eXp( 0.655 Ge\/2> [



N.B.: 1.48x0.752 = 1.1, pretty close to unity. Feeding this parametrization
into our inversion procedure, we get potentials which are finite at r = 0 and
rise, with 7, to infinity for sufficiently small m but stay negative for large m.

V (r) arising from M (k*) of Ref.[7] for m = 0 (black), m = 0.35 GeV (red),
m = 0.50 GeV (magenta), m = 1.0 GeV (blue), m = 1.69 GeV (violet) [5]:
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