

The Alto photofission facility at IPN Orsay

es deux infini

UNIVERSITÉ

PARIS

SUD

Serge Franchoo

Photofission

Photofission at Cern-LPI

F Ibrahim et al, EPJ A 15 (2002)

Photofission at Cern-LPI

10 μ A x 50 MeV e- = 500 W at Alto vs 1 μ A x 26 MeV d = 26 W at Parrne 30x gain expected: 3x cross section, 10x intensity

F Ibrahim et al, EPJ A 15 (2002)

F Ibrahim et al, International Topical Meeting on Nuclear Research Applications and Utilisation of Accelerators, Vienna (2009)

Photofission at Alto

Photofission at Alto

Photofission at Alto

Target and ion source

standard Isolde target with external oven for mass marker

 \emptyset = 14 mm L = 140 mm ρ = 3.2 g/cm³ T ≤ 2000 °C

further target optimisation is possible:

Target and ion source

Increase UC_x density to 13 g/cm³ control porosity nanostructured UC_x, RVCF (reticulous vitreous carbon fiber)...

B Hy et al, NIM B 288 (2012) 34

Ensar Actilab: IPN, Cern, CMMO, Ganil, INFN, Univ Rennes

Accelerate release of Ln and chemically reactive elements via fluorinated molecular beams

Physics: B(E2) through fast timing B Roussière et al, EPJA 47 (2011)

Collaboration IPN, CSNSM, INRNE-Sofia, Tandar-Buenos Aires

Target and ion source

Hot plasma source

High temperature (2000 °C)

Up to 30% efficiency for gaseous elements

Surface ionisation

High efficiency for alkalines ($E_i < 6eV$)

Rialto: Resonant laser ionisation at Alto

Nd:Yag pump laser (532 nm, 90 W)

2 dye lasers (540-850 nm, 8W @ 30W pump, 10 ns pulse width, 3 GHz line width)

BBO doubling units (270-425 nm, >100 mW)

Rialto: Resonant laser ionisation at Alto

2011, 2012: gallium with twoionisation schemes2013: zinc with frequency tripling2014: off-line chamber fordevelopment of laser schemes

Collaboration IPN Orsay, Isolde, Univ. Manchester, Univ. Mainz

Low-energy radioactive ion beams at Alto

Bedo: Beta decay at Orsay

LaBr₃

up to 5 Ge detectors ε = 5-6% $4\pi\beta$ trigger **BGO** anti-Compton

80 ³He tubes ϵ (²⁵²Cf) = 53(2)% borated polyethylene shielding

Bedo: Beta decay at Orsay

<u>Near Z=28</u>

β decay of ⁸²Ge

A Etilé et al, submitted to PRC (2015)

commissioning of Bedo

Bedo: Beta decay at Orsay

Near Z=28

iβ decay of ⁸²Ge

A Etilé et al, submitted to PRC (2015)

β decay of ⁸⁴Ga

K Kolos et al, Physical Review C 88, 047301 (2013)

Tn laser-ionised with tripled UV step but accelerator breakdown

<u>Near Z=50:</u> β decay of ¹²³⁻¹²⁵Ag and ¹²⁷⁻¹²⁸In, βn decay of ¹²⁶Cd D Testov et al

Tetra: Beta-delayed neutron emission

laser-ionised ⁸³Ga beam 4π neutron detector 4π β & 1 Ge detector

D Testov, submitted to NIM A

Tetra and Bedo in alternating mode

Collaboration IPN Orsay - FLNR Dubna

Tetra and Bedo in alternating mode

Lino: Laser-induced nuclear orientation

- polarisation by optical pumping
- μ & Q from nuclear magnetic resonance
- β-delayed spectroscopy of laser-polarized beams

Lino: Laser-induced nuclear orientation

MLLtrap: Mass measurements

- double Penning-trap mass spectrometer
- superconducting solenoid $\Delta B/B < 0.3 \text{ ppm/cm}^3$ at 7 T
- mass resolving power m/ Δ m ~ 10⁵ in the 1st (purification) trap
- ***** statistical uncertainty $\delta m/m = 2.9 \times 10^{-8}$ in the 2nd (precision) trap

V Kolhinen et al, NIM A 600 (2009)

Initiate the physics for Spiral-2 at Ganil: Desir, S3, NFS

- niche with stable beams
- R&D on Isol & RIB
- Iow-energy physics programme based on photofission
- R&D and physics at Alto pave the way to Spiral-2 at Ganil: initiate physics programme, train new generation of isol physicists, develop instruments and methodologies

